Skip to main content
Log in

Transcriptomic analyses provide insight into adventitious root formation of Euryodendron excelsum H. T. Chang during ex vitro rooting

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Euryodendron excelsum H. T. Chang, a critically endangered species endemic to China, is a source of valuable material for the furniture and construction industries. However, this species has some challenges associated with rooting during in vitro propagation that have yet to be resolved. In this study, we optimized rooting and conducted a transcriptomic analysis to appreciate its molecular mechanism, thereby promoting the practical application of in vitro propagation of E. excelsum, and providing technical support for the ecological protection of this rare and endangered species. Results showed that ex vitro rooting performed the highest rooting percentage with 98.33% at 25 days. During ex vitro rooting, there was a wide fluctuation of endogenous levels of indole-3-acetic acid (IAA) and hydrogen peroxide (H2O2) at the stage of root primordia formation. Transcriptome analysis revealed multiple differentially expressed genes (DEGs) involved in adventitious root (AR) development. DEGs involved in plant hormone signal transduction, such as genes encoding auxin-induced protein, auxin-responsive protein, and auxin transporter-like protein, and in response to H2O2, oxidative stress, abiotic and biotic stimuli were significantly up- or down-regulated by ex vitro treatment with 1 mM indole-3-butyric acid (IBA). Our results indicate that ex vitro rooting is an effective method to induce AR from E. excelsum plantlets during micropropagation. DEGs involved in the plant hormone signal transduction pathway played a crucial role in AR formation. H2O2, produced by environmental stimulation, might be related to AR induction as a result of the synergistic action with IBA, ultimately regulating the level of endogenous IAA.

Key message

Under ex vitro rooting, a synergistic action between H2O2 produced by environmental stimulation and IBA played crucial role in the regulation of AR formation from E. excelsum plantlets during micropropagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files. The RNA-seq data has been deposited in the Sequence Read Archives Database (https://www.ncbi.nlm.nih.gov/sra/) under accession number PRJNA723111 (http://www.ncbi.nlm.nih.gov/bioproject/723111).

References

  • Ahkami AH, Melzer M, Ghaffari MR, Pollmann S, Javid MG, Shahinnia F, Hajirezaei MR, Druege U (2013) Distribution of indole-3-acetic acid in Petunia hybrida shoot tip cuttings and relationship between auxin transport, carbohydrate metabolism and adventitious root formation. Planta 238:499–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arya V, Shekhawat NS, Singh RP (2003) Micropropagation of Leptadenia reticulate—a medicinal plant. In Vitro Cell Dev Biol—Plant 39:180–185

    Article  Google Scholar 

  • Barlow PW (1986) Adventitious roots of whole plants: their forms, functions, and evolution. In: Jackson MB (ed) New root formation in plants and cuttings. Springer, Netherlands, Dordrecht, pp 67–110

    Chapter  Google Scholar 

  • Barpete S, Khawar KM, Özcan S (2014) Differential competence for in vitro adventitious rooting of grass pea (Lathyrus sativus L.). Plant Cell Tiss Organ Cult 119:39–50

    Article  CAS  Google Scholar 

  • Barstow M (2020) Euryodendron excelsum (amended version of 2017 assessment). The IUCN red list of threatened species 2020. https://doi.org/10.2305/IUCN.UK.2020-2303.RLTS.T32348A177362929.en

  • Bellini C, Pacurar DI, Perrone I (2014) Adventitious roots and lateral roots: similarities and differences. Annu Rev Plant Biol 65:639–667

    Article  CAS  PubMed  Google Scholar 

  • Benmahioul B, Dorion N, Kaid-Harche M, Daguin F (2012) Micropropagation and ex vitro rooting of pistachio (Pistacia vera L.). Plant Cell Tiss Organ Cult 108:353–358

    Article  Google Scholar 

  • Bhardwaj AK, Singh B, Kaur K, Roshan P, Sharma A, Dolker D, Naryal A, Saxena S, Pati PK, Chaurasia OP (2018) In vitro propagation, clonal fidelity and phytochemical analysis of Rhodiola imbricata Edgew: a rare trans-Himalayan medicinal plant. Plant Cell Tiss Organ Cult 135:499–513

    Article  CAS  Google Scholar 

  • Brunoni F, Collani S, Casanova-Saez R, Simura J, Karady M, Schmid M, Ljung K, Bellini C (2020) Conifers exhibit a characteristic inactivation of auxin to maintain tissue homeostasis. New Phytol 226:1753–1765

    Article  CAS  PubMed  Google Scholar 

  • Cardoso JC, Teixeira da Silva JA (2013) Micropropagation of Zeyheria montana mart. (Bignoniaceae), an endangered endemic medicinal species from the Brazilian cerrado biome. In Vitro Cell Dev Biol Plant 49:710–716

    Article  CAS  Google Scholar 

  • Chang HT (1963) Euryodendron, a new genus of Theaceae. Acta Sci Natur Univ Sunyatseni (04):126–130

  • Chen QJ, Deng BH, Gao J, Zhao ZY, Chen ZL, Song SR, Wang L, Zhao LP, Xu WP, Zhang CX, Ma C, Wang SP (2020a) A miRNA-encoded small peptide, vvi-miPEP171d1, regulates adventitious root formation. Plant Physiol 183:656–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SY, Xiong YP, Wu T, Wu KL, Teixeira da Silva JA, Xiong YH, Zeng SJ, Ma GH (2020b) Axillary shoot proliferation and plant regeneration in Euryodendron excelsum H T Chang, a critically endangered species endemic to China. Sci Rep 10:14402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Almeida MR, Schwambach J, Silveira V, Heringer AS, Fett JP, Fett-Neto AG (2020) Proteomic profiles during adventitious rooting of Eucalyptus species relevant to the cellulose industry. New for 51:213–241

    Article  Google Scholar 

  • Diaz-Sala C (2020) A perspective on adventitious root formation in tree species. Plants (basel) 9(12):1789

    Article  Google Scholar 

  • Dong CJ, Liu XY, Xie LL, Wang LL, Shang QM (2020) Salicylic acid regulates adventitious root formation via competitive inhibition of the auxin conjugation enzyme CsGH3.5 in cucumber hypocotyls. Planta 252:75

    Article  CAS  PubMed  Google Scholar 

  • Druege U, Franken P, Lischewski S, Ahkami AH, Zerche S, Hause B, Hajirezaei MR (2014) Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings. Front Plant Sci 5:494

    Article  PubMed  PubMed Central  Google Scholar 

  • Druege U, Franken P, Hajirezaei MR (2016) Plant hormone homeostasis, signaling, and function during adventitious root formation in cuttings. Front Plant Sci 7:381

    Article  PubMed  PubMed Central  Google Scholar 

  • Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z (2009) GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinform 10:48

    Article  Google Scholar 

  • Estrella-Maldonado H, Ortíz GF, León ACC, Zapata LCR, May CT, Gil FEY, Pool FB, Espín FMI, Santamaría JM (2016) The papaya CpAUX1/LAX and CpPIN genes: structure, phylogeny and expression analysis related to root formation on in vitro plantlets. Plant Cell Tiss Organ Cult 126:187–204

    Article  CAS  Google Scholar 

  • Fattorini L, Veloccia A, Della Rovere F, D’Angeli S, Falasca G, Altamura MM (2017) Indole-3-butyric acid promotes adventitious rooting in Arabidopsis thaliana thin cell layers by conversion into indole-3-acetic acid and stimulation of anthranilate synthase activity. BMC Plant Biol 17:121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrido G, Guerrero JR, Cano EA, Acosta M, Sánchez-Bravo J (2002) Origin and basipetal transport of the IAA responsible for rooting of carnation cuttings. Physiol Plant 114(2):303–312

    Article  CAS  PubMed  Google Scholar 

  • Guo YX, Zhao YY, Zhang M, Zhang LY (2019) Development of a novel in vitro rooting culture system for the micropropagation of highbush blueberry (Vaccinium corymbosum) seedlings. Plant Cell Tiss Organ Cult 139:615–620

    Article  CAS  Google Scholar 

  • Gutierrez L, Mongelard G, Floková K, Păcurar DI, Novák O, Staswick P, Kowalczyk M, Păcurar M, Demailly H, Geiss G, Bellini C (2012) Auxin controls Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. Plant Cell 24:2515–2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilczuk A, Jacygrad E (2016) In vitro propagation and assessment of genetic stability of acclimated plantlets of Cornus alba L. using RAPD and ISSR markers. In Vitro Cell Dev Biol Plant 52:379–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kant S, Bi YM, Zhu T, Rothstein SJ (2009) SAUR39, a small auxin-up RNA gene, acts as a negative regulator of auxin synthesis and transport in rice. Plant Physiol 151:691–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khandaker MM, Boyce AN, Osman N (2012) The influence of hydrogen peroxide on the growth, development and quality of wax apple (Syzygium samarangense, [Blume] Merrill & L.M. Perry var. jambu madu) fruits. Plant Physiol Biochem 53:101–110

    Article  CAS  PubMed  Google Scholar 

  • Khater N, Benbouza H (2019) Preservation of Juniperus thurifera L.: a rare endangered species in Algeria through in vitro regeneration. J for Res 30:77–86

    Article  CAS  Google Scholar 

  • Kong YY, Zhu YB, Gao C, She WJ, Lin WQ, Chen Y, Han N, Bian HW, Zhu MY, Wang JH (2013) Tissue-specific expression of SMALL AUXIN UP RNA41 differentially regulates cell expansion and root meristem patterning in Arabidopsis. Plant Cell Physiol 54:609–621

    Article  CAS  PubMed  Google Scholar 

  • Lakehal A, Bellini C (2019) Control of adventitious root formation: insights into synergistic and antagonistic hormonal interactions. Physiol Plant 165:90–100

    Article  CAS  PubMed  Google Scholar 

  • Lakehal A, Chaabouni S, Cavel E, Le Hir R, Ranjan A, Raneshan Z, Novák O, Păcurar DI, Perrone I, Jobert F, Gutierrez L, Bakò L, Bellini C (2019) A molecular framework for the control of adventitious rooting by TIR1/AFB2-Aux/IAA-dependent auxin signaling in Arabidopsis. Mol Plant 12:1499–1514

    Article  CAS  PubMed  Google Scholar 

  • Lerin J, Ribeiro YRD, de Oliveira TD, Silveira V, Santa-Catarina C (2021) Histomorphology and proteomics during rooting of in vitro shoots in Cariniana legalis (Lecythidaceae), a difficult-to-root endangered species from the Brazilian Atlantic forest. Plant Cell Tiss Organ Cult 144:325–344

    Article  CAS  Google Scholar 

  • Li YH, Zou MH, Feng BH, Huang X, Zhang Z, Sun GM (2012) Molecular cloning and characterization of the genes encoding an auxin efflux carrier and the auxin influx carriers associated with the adventitious root formation in mango (Mangifera indica L.) cotyledon segments. Plant Physiol Biochem 55:33–42

    Article  CAS  PubMed  Google Scholar 

  • Li SW, Shi RF, Leng Y, Zhou Y (2016) Transcriptomic analysis reveals the gene expression profile that specifically responds to IBA during adventitious rooting in mung bean seedlings. BMC Genomics 17:43

    Article  PubMed  PubMed Central  Google Scholar 

  • Li XP, Xu QQ, Liao WB, Ma ZJ, Xu XT, Wang M, Ren PJ, Niu LJ, Jin X, Zhu YC (2016) Hydrogen peroxide is involved in abscisic acid-induced adventitious rooting in cucumber (Cucumis sativus L.) under drought stress. J Plant Biol 59:536–548

    Article  CAS  Google Scholar 

  • Li YH, Zhang HN, Wu QS, Muday GK (2017) Transcriptional sequencing and analysis of major genes involved in the adventitious root formation of mango cotyledon segments. Planta 245:1193–1213

    Article  CAS  PubMed  Google Scholar 

  • Li K, Liang YQ, Xing LB, Mao JP, Liu Z, Dong F, Meng Y, Han MY, Zhao CP, Bao L, Zhang D (2018) Transcriptome analysis reveals multiple hormones, wounding and sugar signaling pathways mediate adventitious root formation in apple rootstock. Int J Mol Sci 19(8):2201

    Article  PubMed Central  Google Scholar 

  • Li AM, Lakshmanan P, He WZ, Tan HW, Liu LM, Liu HJ, Liu JX, Huang DL, Chen ZL (2020) Transcriptome profiling provides molecular insights into auxin-induced adventitious root formation in sugarcane (Saccharum spp. interspecific hybrids) microshoots. Plants 9(8):931

    Article  CAS  PubMed Central  Google Scholar 

  • Liao WB, Huang GB, Yu JH, Zhang ML, Shi XL (2011) Nitric oxide and hydrogen peroxide are involved in indole-3-butyric acid-induced adventitious root development in marigold. J Hortic Sci Biotech 86:159–165

    Article  CAS  Google Scholar 

  • Lin WF, Huang DM, Shi XM, Deng B, Ren YJ, Lin WX, Miao Y (2019) H2O2 as a feedback signal on dual-located WHIRLY1 associates with leaf senescence in Arabidopsis. Cells 8(12):1585

    Article  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lloyd G, McCown B (1980) Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Proc Int Plant Prop Soc 30:421–427

    Google Scholar 

  • Lozzi A, Abdelwahd R, Mentag R, Abousalim A (2019) Development of a new culture medium and efficient protocol for in vitro micropropagation of Ceratonia siliqua L. In Vitro Cell Dev Biol Plant 55:615–624

    Article  CAS  Google Scholar 

  • Ludwig-Müller J, Vertocnik A, Town CD (2005) Analysis of indole-3-butyric acid-induced adventitious root formation on Arabidopsis stem segments. J Exp Bot 56:2095–2105

    Article  PubMed  Google Scholar 

  • Mao XZ, Cai T, Olyarchuk JG, Wei LP (2005) Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21:3787–3793

    Article  CAS  PubMed  Google Scholar 

  • Nourissier S, Monteuuis O (2008) In vitro rooting of two Eucalyptus urophylla X Eucalyptus grandis mature clones. In Vitro Cell Dev Biol Plant 44:263–272

    Article  CAS  Google Scholar 

  • Olatunji D, Geelen D, Verstraeten I (2017) Control of endogenous auxin levels in plant root development. Int J Mol Sci 18(12):2587

    Article  PubMed Central  Google Scholar 

  • Qi XH, Li QQ, Shen JT, Qian CL, Xu XW, Xu Q, Chen XH (2020) Sugar enhances waterlogging-induced adventitious root formation in cucumber by promoting auxin transport and signalling. Plant Cell Environ 43:1545–1557

    Article  CAS  PubMed  Google Scholar 

  • Quan JE, Meng S, Guo EH, Zhang S, Zhao Z, Yang XT (2017) De novo sequencing and comparative transcriptome analysis of adventitious root development induced by exogenous indole-3-butyric acid in cuttings of tetraploid black locust. BMC Genomics 18:179

    Article  PubMed  PubMed Central  Google Scholar 

  • Rameshkumar R, Largia MJV, Satish L, Shilpha J, Ramesh M (2017) In vitro mass propagation and conservation of Nilgirianthus ciliatus through nodal explants: a globally endangered, high trade medicinal plant of Western Ghats. Plant Biosyst 151:204–211

    Article  Google Scholar 

  • Ren H, Gray WM (2015) SAUR proteins as effectors of hormonal and environmental signals in plant growth. Mol Plant 8:1153–1164

    Article  CAS  PubMed  Google Scholar 

  • Revathi J, Manokari M, Shekhawat MS (2018) Optimization of factors affecting in vitro regeneration, flowering, ex vitro rooting and foliar micromorphological studies of Oldenlandia corymbosa L.: a multipotent herb. Plant Cell Tiss Organ Cult 134:1–13

    Article  CAS  Google Scholar 

  • Rout GR (2006) Effect of auxins on adventitious root development from single node cuttings of Camellia sinensis (L.) Kuntze and associated biochemical changes. Plant Growth Regul 48:111–117

    Article  CAS  Google Scholar 

  • Salehin M, Bagchi R, Estelle M (2015) SCFTIR1/AFB-based auxin perception: mechanism and role in plant growth and development. Plant Cell 27:9–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma U, Kataria V, Shekhawat NS (2017) In vitro propagation, ex vitro rooting and leaf micromorphology of Bauhinia racemosa Lam.: a leguminous tree with medicinal values. Physiol Mol Biol Plants 23:969–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shekhawat MS, Manokari M (2016) In vitro propagation, micromorphological studies and ex vitro rooting of cannon ball tree (Couroupita guianensis Aubl.): a multipurpose threatened species. Physiol Mol Biol Plants 22:131–142

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen SK, Ma HY, Wang YH, Wang BY, Shen GZ (2008) The structure and dynamics of natural populations of the endangered plant Euryodendron excelsum H T Chang. Acta Ecol Sin 28:2404–2412

    Google Scholar 

  • Shen SK, Wang YH, Wang BY, Ma HY, Shen GZ, Han ZW (2009) Distribution, stand characteristics and habitat of a critically endangered plant Euryodendron excelsum H. T. Chang (Theaceae): implications for conservation. Plant Species Biol 24:133–138

    Article  Google Scholar 

  • Shu WB, Zhou HJ, Jiang C, Zhao ST, Wang LQ, Li QZ, Yang ZQ, Groover A, Lu MZ (2019) The auxin receptor TIR1 homolog (PagFBL 1) regulates adventitious rooting through interactions with Aux/IAA28 in Populus. Plant Biotechnol J 17:338–349

    Article  CAS  PubMed  Google Scholar 

  • Steffens B, Rasmussen A (2016) The physiology of adventitious roots. Plant Physiol 170:603–617

    Article  CAS  PubMed  Google Scholar 

  • Stevens ME, Woeste KE, Pijut PM (2018) Localized gene expression changes during adventitious root formation in black walnut (Juglans nigra L.). Tree Physiol 38:877–894

    Article  CAS  PubMed  Google Scholar 

  • Timofeeva SN, Elkonin LA, Tyrnov VS (2014) Micropropagation of Laburnum anagyroides Medic. through axillary shoot regeneration. In Vitro Cell Dev Biol—Plant 50:561–567

    Article  Google Scholar 

  • Vengadesan G, Pijut PM (2009) In vitro propagation of northern red oak (Quercus rubra L.). In Vitro Cell Dev Biol—Plant 45:474–482

    Article  CAS  Google Scholar 

  • Verstraeten I, Geelen D (2015) Adventitious rooting and browning are differentially controlled by auxin in rooting-recalcitrant Elegia capensis (Burm. f.) Schelpe. J Plant Growth Regul 34:475–484

    Article  CAS  Google Scholar 

  • Vibha JB, Shekhawat NS, Mehandru P, Dinesh R (2014) Rapid multiplication of Dalbergia sissoo Roxb.: a timber yielding tree legume through axillary shoot proliferation and ex vitro rooting. Physiol Mol Biol Plants 20:81–87

    Article  CAS  PubMed  Google Scholar 

  • Wang YH, Min TL, Hu XL, Cao LM, He H (2002) The ecological and reproduction characteristics of Euryodendron excelsum, a critically endangered plant from Theaceae. Acta Bot Yunnanica 24:725–732

    Google Scholar 

  • Wang YN, Liang CZ, Meng ZG, Li YY, Abid MA, Askari M, Wang PL, Wang Y, Sun GQ, Cai YP, Chen SY, Lina Y, Zhang R, Guo SD (2019) Leveraging Atriplex hortensis choline monooxygenase to improve chilling tolerance in cotton. Environ Exp Bot 162:364–373

    Article  CAS  Google Scholar 

  • Wei K, Wang LY, Wu LY, Zhang CC, Li HL, Tan LQ, Cao HL, Cheng H (2014) Transcriptome analysis of indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.). PLoS ONE 9(9):e107201

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiong J, Yang YJ, Fu GF, Tao LX (2015) Novel roles of hydrogen peroxide (H2O2) in regulating pectin synthesis and demethylesterification in the cell wall of rice (Oryza sativa) root tips. New Phytol 206:118–126

    Article  CAS  PubMed  Google Scholar 

  • Yan HB, Liang CX, Yang LT, Li YR (2010) In vitro and ex vitro rooting of Siratia grosvenorii, a traditional medicinal plant. Acta Physiol Plant 32:115–120

    Article  CAS  Google Scholar 

  • Ye HG, Wang FG, Zhou LX, Ye YS, Huang S (2002) Euryodendron excelsum, an endangered plant in Theaceae. Chin J Bot 4:3

    Google Scholar 

  • Yin HJ, Li MZ, Lv MH, Hepworth SR, Li DD, Ma CF, Li J, Wang SM (2020) SAUR15 promotes lateral and adventitious root development via activating H+-ATPases and auxin biosynthesis. Plant Physiol 184:837–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You J, Chan ZL (2015) ROS regulation during abiotic stress responses in crop plants. Front Plant Sci 6:1092

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang CX, Feng BH, Chen TT, Zhang XF, Tao LX, Fu GF (2017) Sugars, antioxidant enzymes and IAA mediate salicylic acid to prevent rice spikelet degeneration caused by heat stress. Plant Growth Regul 83:313–323

    Article  CAS  Google Scholar 

  • Zhang LS, Shi X, Zhang YT, Wang JJ, Yang JW, Ishida T, Jiang WQ, Han XY, Kang JK, Wang XN, Pan LX, Lv S, Cao B, Zhang YH, Wu JB, Han HB, Hu ZB, Cui LJ, Sawa S, He JM, Wang GD (2019) CLE9 peptide-induced stomatal closure is mediated by abscisic acid, hydrogen peroxide, and nitric oxide in Arabidopsis thaliana. Plant Cell Environ 42:1033–1044

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Xiao ZA, Zhan C, Liu MF, Xia WX, Wang N (2019) Comprehensive analysis of dynamic gene expression and investigation of the roles of hydrogen peroxide during adventitious rooting in poplar. BMC Plant Biol 19(1):99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao D, Wang YT, Feng C, Wei Y, Peng X, Guo X, Guo XW, Zhai ZF, Li J, Shen XS, Li TH (2020) Overexpression of MsGH3.5 inhibits shoot and root development through the auxin and cytokinin pathways in apple plants. Plant J 103:166–183

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Personal Biotechnology Co., Ltd. for their skillful support of RNA-sequencing.

Funding

This work was supported by the National Natural Science Foundation of China Youth Fund (32100311), National Key Research Plan of China (Grant No.: 2016YFC0503104) and Guangdong Province Science and Technology Program (Number: 2015B020231008).

Author information

Authors and Affiliations

Authors

Contributions

XHZ, YL, KLW, FL, JATdS, GHM and SJZ designed the experiment and provided guidance on the study. YPX and SYC prepared samples for AR induction and RNA-seq analysis. XHC, TZ, BYG and MYN performed the statistical analysis on the determination of IAA and H2O2 content, and RNA-seq data. ZPW, YYY, XCY and JHP participated in the experiment of AR induction and anatomical analysis. YPX, JATdS and SYC were involved in statistical analyses and co-wrote the manuscript. All authors wrote, read and approved the manuscript.

Corresponding authors

Correspondence to Guohua Ma or Songjun Zeng.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Specific permission was not required for plant collection at the mentioned locations.

Consent for publication

Not applicable.

Additional information

Communicated by Paloma Moncaleán.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 KB)

Supplementary file1 (RAR 4371 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Y., Chen, S., Wei, Z. et al. Transcriptomic analyses provide insight into adventitious root formation of Euryodendron excelsum H. T. Chang during ex vitro rooting. Plant Cell Tiss Organ Cult 148, 649–666 (2022). https://doi.org/10.1007/s11240-021-02226-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-021-02226-9

Keywords

Navigation