Skip to main content
Log in

Plant-specific transcription factor LrTCP4 enhances secondary metabolite biosynthesis in Lycium ruthenicum hairy roots

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Lycium ruthenicum Murr. is an important medicinal plant from traditional Chinese medicine. It contains various biologically active compounds, such as phenolics and alkaloids. These secondary metabolites are used extensively in dietary food and pharmaceutical products. However, these phenolics occur at very low concentrations in the roots, and thus, it is expensive to commercially produce them. The present study was proposed to induce a hairy root culture system for the first time in L. ruthenicum to achieve a high concentration of phenolic polyamines and other non-targeted secondary metabolites. The over-expression sequence of the TCP4 gene was retrieved from the transcriptome data of L. ruthenicum (LrTCP4-OE), and a gene construct (with pCAMBIA 1307) was integrated into the genome of L. ruthenicum by Ri-mediated genetic transformation. A total of 21 metabolites were tentatively identified by using ultrahigh-performance liquid chromatography coupled to photodiode array detector/quadrupole time-of-flight mass spectrometry (UPLC-PDA-qTOF-MS). Transgenic hairy root clones had higher relative abundances of kukoamine A and 17 other secondary metabolites than did control-type hairy roots. After 1 month, high-growth transgenic and non-transgenic hairy root lines were subjected to UPLC analysis for absolute quantification (with an authentic standard) of total kukoamine A. Transgenic hairy root lines (LrTCP4-OE) showed higher kukoamine A accumulation (0.14%) than did control hairy roots (0.11%). This enhanced productivity correlated with increased TCP4-OE activity, validating the primary role that TCP4 plays in total kukoamine A synthesis and the efficiency of non-targeted metabolomic techniques in studying plant metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ali SS, Kasoju N, Luthra A, Singh A, Sharanabasava H, Sahu A (2008) Indian medicinal herbs as sources of antioxidants. Food Res Int 41:1–15

    Article  Google Scholar 

  • Altintas A, Kosar M, Kirimer N, Baser KHC, Demirci BC (2006) Composition of the essential oils of Lycium barbarum and L. ruthenicum fruits. Chem Nat Compd 42:24–25

    Article  CAS  Google Scholar 

  • Bassard JE, Ullmann P, Bernier F, Werck-Reichhart D (2010) Phenolamides: bridging polyamines to the phenolic metabolism. Phytochemistry 71:1808–1824

    Article  CAS  PubMed  Google Scholar 

  • Bourgaud F, Gravot A, Milesi S, Gontier E (2001) Production of plant secondary metabolites: a historical perspective. Plant Sci 161:839–851

    Article  CAS  Google Scholar 

  • Chandra S, Chandra R (2011) Engineering secondary metabolite production in hairy roots. Phytochem Rev 10:371

    Article  CAS  Google Scholar 

  • Cheng M, Lowe BA, Spencer TM, Ye X, Armstrong CL (2004) Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cell & Dev Biol-Plant 40:31–45

    Article  Google Scholar 

  • Cohen FJ, Manni A, Glikman P, Bartholomew M, Demers L (1988) Involvement of the polyamine pathway in antiestrogeninduced growth inhibition of human breast cancer. Can Res 48:6819–6825

    CAS  Google Scholar 

  • Danisman S et al (2012) Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically. Plant Physiol 159:1511–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeBoer KD, Lye JC, Aitken CD, Su AK-K, Hamill JD (2009) The A622 gene in Nicotiana glauca (tree tobacco): evidence for a functional role in pyridine alkaloid synthesis. Plant Mol Biol 69:299

    Article  CAS  PubMed  Google Scholar 

  • Fu X, Cheng S, Liao Y, Huang B, Du B, Zeng W, Jiang Y, Duan X, Yang Z (2018) Comparative analysis of pigments in red and yellow banana fruit. Food Chem 239:1009–1018

    Article  CAS  PubMed  Google Scholar 

  • Funayama S, Yoshida K, Konno C, Hikino H (1980) Structure of kukoamine A, a hypotensive principle of Lycium chinense root barks1. Tetrahedron Lett 21:1355–1356

    Article  CAS  Google Scholar 

  • Funayama S, Zhang G-R, Nozoe S (1995) Kukoamine B, a spermine alkaloid from Lycium chinense. Phytochemistry 38:1529–1531

    Article  CAS  Google Scholar 

  • Gaudin V, Varin T, Jouanin L (1994) Bacterial genesmodifying hormonal balances in plants. Plant Physiol Biochem 32:11–29

    CAS  Google Scholar 

  • Gnonlonfin BGJ, Ambaliou S, Leon B (2012) Review scopoletin—a coumarin phytoalexin with medicinal properties. Crit Rev Plant Sci 31:47–56

    Article  CAS  Google Scholar 

  • Hadjipavlou-Litina D, Garnelis T, Athanassopoulos CM, Papaioannou D (2009) Kukoamine A analogs with lipoxygenase inhibitory activity. J Enzyme Inhibition Med Chem 24:1188–1193

    Article  CAS  Google Scholar 

  • Hao J (2012) GbTCP, a cotton TCP transcription factor, confers fibre elongation and root hair development by a complex regulating system. J Exp Bot 63:6267–6281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan V, Fatemeh MK, Reza K, Mir Babak B, Mehdi MF (2014) Isolation and structure elucidation of coumarin and cinamate derivatives from Lycium ruthenicum. Q Iran Chem Commun 2:277–282

    Google Scholar 

  • Hu Z, Yang J, Guo G, Zheng G (2000) Establishment of transformed Lycium barbarum Line. mediated with Agrobacterium rhizogenes and factors affecting transformation. Acta Bot Boreali-Occidentalia Sinica 20:766–771

    Google Scholar 

  • Hu Z, Wang Y, Wu Y, Li W (2006) Effects of light and plant growth regulators on growth of normal and hairy root of Lycium barbarum in vitro China J Chin Mater Med 31:106–110

    Google Scholar 

  • Jacob A, Malpathak N (2005) Manipulation of MS and B5 components for enhancement of growth and solasodine production in hairy root cultures of Solanum khasianum Clarke. Plant Cell Tissue Org Cult 80:247–257

    Article  CAS  Google Scholar 

  • Jain A, Singh S (2015) Effect of growth regulators and elicitors for the enhanced production of solasodine in hairy root culture of Solanum melongena (L.) J Indian Bot Soc 94:23–39

    Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jouhikainen K, Lindgren L, Jokelainen T, Hiltunen R, Teeri TH, Oksman-Caldentey K-M (1999) Enhancement of scopolamine production in Hyoscyamus muticus L. hairy root cultures by genetic engineering. Planta 208:545–551

    Article  CAS  Google Scholar 

  • Kai K, Shimizu B, Mizutani M, Watanabe K, Sakata K (2006) Accumulation of coumarins in Arabidopsis thaliana. Phytochemistry 67:379–386

    Article  CAS  PubMed  Google Scholar 

  • Kajikawa M, Hirai N, Hashimoto T (2009) A PIP-family protein is required for biosynthesis of tobacco alkaloids. Plant Mol Biol 69:287

    Article  CAS  PubMed  Google Scholar 

  • Kliebenstein DJ, Osbourn A (2012) Making new molecules—evolution of pathways for novel metabolites in plants. Curr Opin Plant Biol 15:415–423

    Article  CAS  PubMed  Google Scholar 

  • Kosugi S, Ohashi Y (2002) DNA binding and dimerization specificity and potential targets for the TCP protein family. Plant J 30:337–348

    Article  CAS  PubMed  Google Scholar 

  • Li C, Potuschak T, Colón-Carmona A, Gutiérrez RA, Doerner P (2005) Arabidopsis TCP20 links regulation of growth and cell division control pathways. Proc Natl Acad Sci USA 102:12978–12983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Jin Z, Zhao D, Cheng L, Fu C, Ma F (2006) Overexpression of the Saussurea medusa chalcone isomerase gene in S. involucrata hairy root cultures enhances their biosynthesis of apigenin. Phytochemistry 67:553–560

    Article  CAS  PubMed  Google Scholar 

  • Li Y-Y, Wang H, Zhao C, Huang Y-Q, Tang X, Cheung H-Y (2015) Identification and characterization of kukoamine metabolites by multiple ion monitoring triggered enhanced product ion scan method with a triple-quadruple linear ion trap mass spectrometer. J Agric Food Chem 63:10785–10790

    Article  CAS  PubMed  Google Scholar 

  • Liu X et al (2011a) Dual targets guided screening and isolation of kukoamine B as a novel natural anti-sepsis agent from traditional Chinese herb Cortex lycii. Int Immunopharmacol 11:110–120

    Article  CAS  PubMed  Google Scholar 

  • Liu X et al (2011b) Kukoamine B, a novel dual inhibitor of LPS and CpG DNA, is a potential candidate for sepsis treatment. Br J Pharmacol 162:1274–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Cobo A, Gómez-Caravaca AM, Cerretani L, Segura-Carretero A, Fernández-Gutiérrez A (2014) Distribution of phenolic compounds and other polar compounds in the tuber of Solanum tuberosum L. by HPLC-DAD-q-TOF and study of their antioxidant activity. J Food Compos Anal 36:1–11

    Article  CAS  Google Scholar 

  • Mehrotra S, Srivastava V, Rahman L, Kukreja LK (2013) Overexpression of a Catharanthus tryptophan decarboxylase (tdc) gene leads to enhanced terpenoid indole alkaloid (TIA) production in transgenic hairy root lines of Rauwolfia serpentina Plant Cell Tissue Org Cult 115:377–384

    Article  CAS  Google Scholar 

  • Moyano E, Fornalé S, Palazón J, Cusidó RM, Bagni N, Piñol MT (2002) Alkaloid production in Duboisia hybrid hairy root cultures overexpressing the. pmt gene. Phytochemistry 59:697–702

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Nagella P, Thiruvengadam M, Jung SJ, Murthy HN, Chung IM (2013) Establishment of Gymnema sylvestre hairy root cultures for the production of gymnemic acid. Acta Physiol Plant 35:3067–3073

    Article  CAS  Google Scholar 

  • Ogawa T et al (2017) Seed metabolome analysis of a transgenic rice line expressing cholera toxin B-subunit. Sci Rep 7:5196 https://doi.org/10.1038/s41598-017-04701-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parapunova V et al (2014) Identification, cloning and characterization of the tomato TCP transcription factor family. BMC Plant Biol 14:157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parr AJ, Mellon FA, Colquhoun IJ, Davies HV (2005) Dihydrocaffeoyl polyamines (kukoamine and allies) in potato (Solanum tuberosum) tubers detected during metabolite profiling. J Agric Food Chem 53:5461–5466

    Article  CAS  PubMed  Google Scholar 

  • Peng Q, Liu H, Lei HJ, Wang XQ (2016) Relationship between structure and immunological activity of an arabinogalactan from Lycium ruthenicum. Food Chem 194:595–600

    Article  CAS  PubMed  Google Scholar 

  • Ponasik JA, Strickland C, Faerman C, Savvides S, Karplus PA, Ganem B (1995) Kukoamine A and other hydrophobic acylpolyamines: potent and selective inhibitors of Crithidia fasciculate trypanothione reductase. Biochem J 311:371–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Praveen N, Murthya HN (2012) Synthesis of withanolide A depends on carbon source and medium pH in hairy root cultures of Withania somnifera. Ind Crops Prod 35:241–243

    Article  CAS  Google Scholar 

  • Qiu J et al (2012) Screening natural antioxidants in peanut shell using DPPH–HPLC–DAD–TOF/MS methods. Food Chem 135:2366–2371

    Article  CAS  PubMed  Google Scholar 

  • Rogoza LN, Salakhutdinov NF, Tolstikov GA (2005) Plant alkaloids of the polymethyleneamine series. Russ Chem Rev 74:381–396

    Article  CAS  Google Scholar 

  • Sarvepalli K, Nath U (2011) Hyper-activation of the TCP4 transcription factor in Arabidopsis thaliana accelerates multiple aspects of plant maturation. Plant J 67:595–607

    Article  CAS  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101

    Article  CAS  PubMed  Google Scholar 

  • Schoch G, Goepfert S, Morant M, Hehn A, Meyer D, Ullmann P, Werck-Reichhart D (2001) CYP98A3 from Arabidopsis thaliana is a 3′-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. J Biol Chem 276:36566–36574

    Article  CAS  PubMed  Google Scholar 

  • Sevón N, Dräger B, Hiltunen R, Oksman-Caldentey K-M (1997) Characterization of transgenic plants derived from hairy roots of Hyoscyamus muticus. Plant Cell Rep 16:605–611

    Article  PubMed  Google Scholar 

  • Talhaoui N, Gómez-Caravaca AM, León L, De la Rosa R, Segura-Carretero A, Fernández-Gutiérrez A (2014) Determination of phenolic compounds of ‘Sikitita’olive leaves by HPLC-DAD-TOF-MS. Comparison with its parents ‘Arbequina’and ‘Picual’olive leaves. LWT-Food Sci Technol 58:28–34

    Article  CAS  Google Scholar 

  • Thwe A, Arasu MV, Li X, Park CH, Kim SJ, Al-Dhabi NA, Park SU (2016) Effect of different Agrobacterium rhizogenes strains on hairy root induction and phenylpropanoid biosynthesis in tartary buckwheat (Fagopyrum tataricum Gaertn). Front Microbiol 7:318

    Article  PubMed  PubMed Central  Google Scholar 

  • Tzfira T, Vaidya M, Citovsky V (2004) Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium. Nature 431:87–92

    Article  CAS  PubMed  Google Scholar 

  • Vanhala L, Hiltunen R, Oksman-Caldentey K-M (1995) Virulence of different Argrobacterium strains on hairy root formation of Hyoscyamus muticus. Plant Cell Rep 14:236–240

    Article  CAS  PubMed  Google Scholar 

  • Wang CJ et al (2003) Defining the molecular requirements for the selective delivery of polyamine conjugates into cells containing active polyamine transporters. J Med Chem 46:5129–5138

    Article  CAS  PubMed  Google Scholar 

  • Weigel D, Glazebrook J (2006) Transformation of Agrobacterium using electroporation. Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.prot4665

    Article  Google Scholar 

  • Zeng S, Liu Y, Wu M, Liu X, Shen X, Liu C, Wang Y (2014) Identification and validation of reference genes for quantitative real-time PCR normalization and its applications in Lycium. PLoS ONE 9:e97039. https://doi.org/10.1371/journal.pone.0097039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng J et al (2011) Anthocyanins composition and antioxidant activity of wild Lycium ruthenicum Murr. from Qinghai-Tibet Plateau. Food Chem 126:859–865

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (31470391 and 31770334), Youth Innovation Promotion Association, CAS (2015286), and the Scientific Project of Ningxia Agriculture Comprehensive Development (znnfkj2015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaohua Zeng, Zubaida Yousaf or Wang Ying.

Additional information

Communicated by Silvia Moreno.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 111 KB)

Supplementary material 2 (DOCX 31 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chahel, A.A., Zeng, S., Yousaf, Z. et al. Plant-specific transcription factor LrTCP4 enhances secondary metabolite biosynthesis in Lycium ruthenicum hairy roots. Plant Cell Tiss Organ Cult 136, 323–337 (2019). https://doi.org/10.1007/s11240-018-1518-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-018-1518-2

Keywords

Navigation