Skip to main content
Log in

Enhancing the production of scopoletin and quercetin 3-O-β-d-glucoside from cell suspension cultures of Tilia americana var. mexicana by modulating the copper and nitrate concentrations

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The aerial tissues of Tilia americana var. mexicana produce compounds with anxiolytic activity, such as quercetin 3-O-β-d-glucoside and tiliroside, in addition to ones with anti-inflammatory properties, such as scopoletin. These three compounds were initially identified in callus cultures of apical buds. In the present study, suspension cultures from leaf explant callus were established; the accumulation of scopoletin and quercetin 3-O-β-d-glucoside in these cultures were found to be cell-growth-associated using cell growth and active compound-production kinetics assays. The effects of varying the nitrate and copper concentrations in Murashige and Skoog (MS, 27.4 mM total nitrates and 0.01 µM copper) medium on the growth of a suspension culture of T. americana cells and on the production of active compounds were tested by means of central composite design (CCD) generally used in the response surface methodology (RSM). Cell growth, measured as maximal biomass, improved when the total nitrate concentration decreased in the MS medium to 13.7 mM (p < 0.01) regardless of the copper concentration. As a phytoalexin, scopoletin accumulated rapidly in plants after pathogen infection, in the suspension cultures scopoletin yield was stimulated by increased copper concentration to 1.2 μM (p < 0.01). According to the C:N hypothesis, the carbon excess generated by nitrates reduced to 8.03 mM (p < 0.01) stimulated the production of quercetin 3-O-β-d-glucoside. Cell suspension of T. americana represents a potential biotechnological alternative for industrial exploitation in a stirred-tank bioreactor using a two-phase process: (1) the first step will be to grow the cell suspension, (2) the second stage will consist in handle the suspension culture towards the production of anxiolytic compounds or towards the production of anti-inflammatory compounds. As well as to evaluate another elicitors to stimulate tiliroside production in the T. americana suspension cultures.

Key message

Tilia americana cells grown in a two-phases suspension culture system produce more scopoletin and quercetin 3-O-β-d-glucoside when exposed to increased concentrations of copper and decreased concentrations of total nitrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

CCD:

Central composite design

Dt:

Duplication time

DW:

Dried weight

FD:

Factorial design

GI:

Growth index

IBA:

Indol-3-butyric acid

Kin:

Kinetin

µ:

Maximal growth rate

MS:

Murashige and Skoog

rf:

Reference front

RSM:

Response surface methodology

SD:

Star design

TDZ:

Thidiazuron

TPA:

12-O-Tetradecanoylphorbol-13-acetate

References

  • Aguilar A, Camacho JR, Chino S, Jacquez P, López ME (1994) Herbario medicinal del Instituto Mexicano del Seguro Social. Información Etnobotánica. Instituto Mexicano del Seguro Social, Mexico City, p 218

    Google Scholar 

  • Aguirre-Hernández E, Martínez A, González-Trujano M, Moreno J, Vibrans H, Soto-Hernández M (2007) Pharmacological evaluation of the anxiolytic and sedative effects of Tilia americana L. var. mexicana in mice. J Ethnopharmacol 109:140–145. https://doi.org/10.1016/j.jep.2006.07.017

    Article  PubMed  Google Scholar 

  • Aguirre-Hernández E, González-Trujano M, Martínez A, Moreno J, Kite G, Terrazas T, Soto-Hernández M (2010) HPLC/MS analysis and anxiolytic-like effect of quercetin and kaempferol flavonoids from Tilia americana L. var. mexicana. J Ethnopharmacol 127:91–97. https://doi.org/10.1016/j.jep.2009.09.044

    Article  CAS  PubMed  Google Scholar 

  • Aguirre-Hernández E, González-Trujano ME, Terrazas T, Herrera-Santoyo T, Guevara-Fefer P (2016) Anxiolytic and sedative-like effects of flavonoids from Tilia americana var. mexicana: GABAergic and serotonergic participation. Salud Mental 39:37–46. https://doi.org/10.17711/SM.0185-3325.2015.066

    Article  Google Scholar 

  • Ali MB, Hahn EJ, Paek KY (2006) Copper-induced changes in the growth, oxidative metabolism, and saponin production in suspension culture roots of Panax ginseng in bioreactors. Plant Cell Rep 25(10):1122–1132. https://doi.org/10.1007/s00299-006-0174-x

    Article  CAS  PubMed  Google Scholar 

  • Angeles-López GE, González-Trujano ME, Déciga-Campos M, Ventura-Martínez R (2013) Neuroprotective evaluation of Tilia americana and Annona diversifolia in the neuronal damage induced by intestinal ischemia. Neurochem Res 38:1632–1640. https://doi.org/10.1007/s11064-013-1065-5

    Article  CAS  PubMed  Google Scholar 

  • Angeles-López GE, González-Trujano ME, Gómez C, Chánez-Cárdenas ME, Ventura-Martínez R (2015) Neuroprotective effects of Tilia americana var. mexicana on damage induced by cerebral ischaemia in mice. Nat Prod Res 30:2115–2119. https://doi.org/10.1080/14786419.2015.1110701

    Article  CAS  PubMed  Google Scholar 

  • Argueta A, Cano L, Rodarte M (1994) Atlas de las plantas de la medicina tradicional mexicana. Tomo III. Instituto Nacional Indigenista, Mexico City, p 1337

    Google Scholar 

  • Azevedo H, Dias A, Tavares RM (2008) Establishment and characterization of Pinus pinaster suspension cell cultures. Plant Cell Tis Org Cult 93(1):115–121. https://doi.org/10.1007/s11240-008-9349-1

    Article  CAS  Google Scholar 

  • Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76(5):965–977. https://doi.org/10.1016/j.talanta.2008.05.019

    Article  CAS  PubMed  Google Scholar 

  • Bourgaud F, Gravot A, Milesi S, Gontier E (2001) Production of plant secondary metabolites: a historical perspective. Plant Sci 161(5):839–851. https://doi.org/10.1016/s0168-9452(01)00490-3

    Article  CAS  Google Scholar 

  • Bruns RE, Scarminio IS, de Barros Neto B (2006) Statistical design-chemometrics, vol 25. Elsevier, Amsterdam

    Google Scholar 

  • Chen CT, Chen TH, Lo KF, Chiu CY (2004) Effects of proline on copper transport in rice seedlings under excess copper stress. Plant Sci 166(1):103–111. https://doi.org/10.1016/j.plantsci.2003.08.015

    Article  CAS  Google Scholar 

  • Flores-Sánchez K, Cruz-Sosa F, Zamilpa-Alvarez A, Nicasio-Torres P (2019) Active compounds and anti-inflammatory activity of the methanolic extracts of the leaves and callus from Tilia americana var. mexicana propagated plants. Plant Cell Tiss Organ Cult 137(1):55. https://doi.org/10.1007/s11240-018-01550-x

    Article  CAS  Google Scholar 

  • Fritz C, Palacios N, Fiel R, Stitt M (2006) Regulation of secondary metabolism by the carbon nitrogen status in tobacco: nitrate inhibits large sectors of phenylpropanoid metabolism. Plant J 46(4):533–548. https://doi.org/10.1111/j.1365-313X.2006.02715.x

    Article  CAS  PubMed  Google Scholar 

  • Gilmour SG (2006) Response surface designs for experiments in bioprocessing. Biometrics 62:323–331. https://doi.org/10.1111/j.1541-0420.2005.00444.x

    Article  PubMed  Google Scholar 

  • Hanchinal VM, Survase SA, Sawant SK, Annapure US (2008) Response surface methodology in media optimization for production of β-carotene from Daucus carota. Plant Cell Tiss Org Cult 93(2):123–132. https://doi.org/10.1007/s11240-008-9350-8

    Article  CAS  Google Scholar 

  • Hardin JW (1990) Variation patterns and recognition of varieties of Tilia americana s.l. Syst Bot 15:33–48. https://doi.org/10.2307/2419014

    Article  Google Scholar 

  • Herrera-Ruiz M, Román-Ramos R, Zamilpa A, Tortoriello J, Jiménez-Ferrer E (2008) Flavonoids from Tilia americana with anxiolytic activity in plus-maze test. J Ethnopharmacol 118:312–317. https://doi.org/10.1016/j.jep.2008.04.019

    Article  CAS  PubMed  Google Scholar 

  • Katoh S, Yoshida F (2009) Cell kinetics in biochemical engineering: a textbook for engineers, chemists and biologists. Wiley, Weinheim, pp 47–54

    Book  Google Scholar 

  • Kodama T, Ishida H, Kokubo T, Yamakawa T, Noguchi H (1990) Glucosylation of quercetin by a cell suspension culture of Vitis sp. Agric Biol Chem 54(12):3283–3288. https://doi.org/10.1080/00021369.1990.10870473

    Article  CAS  Google Scholar 

  • Kokubo T, Ambe Y, Nakamura M, Yamakawa T, Noguchi H, Kodama T (1991) Quercetin 3-O-β-D-glucopyranoside and Isorhamnetin 3-O-β-D-glucopyranoside formation from quercetin by cell cultures of Ipomoea batatas and Crocus sativum. Agric Biol Chem 55(2):613–614. https://doi.org/10.1080/00021369.1991.10870595

    Article  CAS  Google Scholar 

  • Korsangruang S, Soonthornchareonnon N, Chintapakorn Y, Saralamp P, Prathanturarug S (2010) Effects of abiotic and biotic elicitors on growth and isoflavonoid accumulation in Pueraria candollei var. candollei and P. candollei var. mirifica cell suspension cultures. Plant Cell Tiss Org Cult 103(3):333–342. https://doi.org/10.1007/s11240-010-9785-6

    Article  CAS  Google Scholar 

  • Lea US, Slimestad R, Smedvig P, Lillo C (2007) Nitrogen deficiency enhances expression of specific MYB and bHLH transcription factors and accumulation of end products in the flavonoid pathway. Planta 225:1245–1253. https://doi.org/10.1007/s00425-006-0414-x

    Article  CAS  PubMed  Google Scholar 

  • Maksymiec W (2007) Signaling responses in plants to heavy metal stress. Acta Physiol Plant 29:177–187. https://doi.org/10.1007/s11738-007-0036-3

    Article  CAS  Google Scholar 

  • Martínez SM (1987) Plantas autóctonas y productos volcánicos de las inmediaciones de Morelia. Universidad Michoacana de San Nicolás de Hidalgo, Morelia

    Google Scholar 

  • Martínez M, Matuda E (1979) Flora del Estado de México. Tomo III. Ed. Biblioteca enciclopédica del Estado de México, Mexico City, p 495

    Google Scholar 

  • Matkowski A (2008) Plant in vitro culture for the production of antioxidants—a review. Biotechnol Adv 26(6):548–560. https://doi.org/10.1016/j.biotechadv.2008.07.001

    Article  CAS  PubMed  Google Scholar 

  • Monroy-Ortiz C, Castillo-España P (2007) Plantas medicinales utilizadas en el estado de Morelos. Universidad Autónoma del Estado de Morelos, Morelos, pp 251–253, 319

    Google Scholar 

  • Mora-Izquierdo A, Nicasio-Torres P, Sepúlveda-Jiménez G, Cruz-Sosa F (2011) Changes in biomass allocation and phenolic compounds accumulation due to the effect of light and nitrate supply in Cecropia peltata plants. Acta Physiol Plant 33(6):2135–2147. https://doi.org/10.1007/s11738-011-0753-5

    Article  CAS  Google Scholar 

  • Muñoz-Flores HJ, Orozco-Gutiérrez G, García-Magaña J, Coria-Ávalos VM, Salgado-Garciclia R, Santiago-Santiago MR (2011) Épocas de colecta y tratamiento para enraizamiento de estacas de cirimo Tilia mexicana Schlecht (Tiliaceae). Rev Mex Cienc For 2(3):13–23

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nicasio-Torres P, Meckes-Fischer M, Aguilar-Santamaría L, Garduño-Ramírez ML, Chávez-Ávila VM, Cruz-Sosa F (2012) Production of chlorogenic acid and isoorientin hypoglycemic compounds in Cecropia obtusifolia calli and in cell suspension cultures with nitrate deficiency. Acta Physiol Plant 34(1):307–316. https://doi.org/10.1007/s11738-011-0830-9

    Article  CAS  Google Scholar 

  • Nicasio-Torres P, Pérez-Hernández J, González-Cortázar M, Meckes-Fischer M, Tortoriello J, Cruz-Sosa F (2016) Production of potential anti-inflammatory compounds in cell suspension cultures of Sphaeralcea angustifolia (Cav.) G. Don. Acta Physiol Plant 38(8):209. https://doi.org/10.1007/s11738-016-2211-x

    Article  CAS  Google Scholar 

  • Noguerón-Merino MC, Jiménez-Ferrer E, Román-Ramos R, Zamilpa A, Tortoriello J, Herrera-Ruiz M (2015) Interactions of a standardized flavonoid fraction from Tilia americana with serotoninergic drugs in elevated plus maze. J Ethnopharmacol 164:319–327. https://doi.org/10.1016/j.jep.2015.01.029

    Article  CAS  PubMed  Google Scholar 

  • Orozco-Sanchez F, Sepúlveda-Jiménez G, Trejo-Tapia G, Zamilpa A, Rodríguez-Monroy M (2011) Oxygen limitations to grow Azadirachta indica cell culture in shake flasks. Rev Mex Ing Quím 10:343–352

    CAS  Google Scholar 

  • Palasota JA, Deming SN (1992) Central composite experimental designs: applied to chemical systems. J Chem Educ 69(7):560. https://doi.org/10.1021/ed069p560

    Article  CAS  Google Scholar 

  • Pavón NP, Rico-Gray V (2000) An endangered and potentially economic tree of Mexico: Tilia mexicana (Tiliaceae). Econ Bot 54:113–114

    Article  Google Scholar 

  • Pavón-Reyes L, Evangelista-Lozano S, Sepúlveda-Jiménez G, Chávez-Ávila V, Rodríguez-Monroy M (2016) Cell culture of Bursera linanoe in a stirred tank bioreactor for production of linalool and linalyl acetate. Nat Prod Commun 12(3):319–322

    Google Scholar 

  • Pérez-Hernández J, González-Cortázar M, Marquina S, Herrera-Ruiz M, Meckes-Fischer M, Tortoriello J, Cruz-Sosa F, Nicasio-Torres P (2014) Sphaeralcic acid and Tomentin, anti-inflammatory compounds produced in cell suspension cultures of Sphaeralcea angustifolia. Planta Med 80(02/03):209–214. https://doi.org/10.1055/s-0033-1360302

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Hernández J, Martínez-Trujillo A, Nicasio-Torres P (2019) Optimization of active compounds production by interaction between nitrate and copper in Sphaeralcea angustifolia cell suspension using response surface methodology. Plant Cell Tiss Organ Cult 136(2):407–413. https://doi.org/10.1007/s11240-018-1516-4

    Article  CAS  Google Scholar 

  • Rozita O, Abdullah MA, Hasan MA, Marziah M, Siti MMK (2005) Optimization and elucidation of interactions between ammonium, nitrate and phosphate in Centella asiatica cell culture using response surface methodology. Biotechnol Bioprocess Eng 10:192–197. https://doi.org/10.3844/ajassp.2004.215.219

    Article  Google Scholar 

  • Secretaria de Medio Ambiente y Recursos Naturales (SEMARNAT) (2010) Norma Oficial Mexicana NOM-059-SEMARNAT-2010, Protección ambiental-Especies nativas de México de flora y fauna silvestres-Categorías de riesdo y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo. Diario oficial de la federación, 30 Diciembre de 2010. México, D.F. 77 pp. http://dof.gob.mx/normasOficiales/4254/semarnat/semarnat.htm

  • Siatka T, Reichling J (2000) Stimulation of scopoletin accumulation in Archangelica officinalis Hoffm. cell suspension cultures by fungal elicitors. Herba Polonica 46(1):12–17

    CAS  Google Scholar 

  • Siatka T, Chlebek J, Host’alkova A (2017) Copper (II) sulfate stimulates scopoletin production in cell suspension cultures of Angelica archangelica. Nat Prod Commun 125(11):1779–1780

    Google Scholar 

  • Staniszewska I, Królicka A, Maliński E, Łojkowska E, Szafranek J (2003) Elicitation of secondary metabolites in in vitro cultures of Ammi majus L. Enzyme Microb Technol 33(5):565–568. https://doi.org/10.1016/S0141-0229(03)00180-7

    Article  CAS  Google Scholar 

  • Tapia N, Zamilpa A, Bonfil M, Ventura E, Cruz-Vega D, Del Villar A, Cruz-Sosa F, Osuna L (2013) Effect of the culture medium and biotic stimulation on taxane production in Taxus globosa Schltdl. in vitro cultures. Acta Physiol Plant 35:3447–3455. https://doi.org/10.1007/s11738-013-1380-0

    Article  CAS  Google Scholar 

  • Trejo-Espino JL, Rodríguez-Monroy M, Vernon-Carter EJ, Cruz-Sosa F (2011) Establishment and characterization of Prosopis laevigata (Humb. & Bonpl. ex Willd) MC Johnst. cell suspension culture: a biotechnology approach for mesquite gum production. Acta Physiol Plant 33(5):1687–1695. https://doi.org/10.1007/s11738-010-0705-5

    Article  CAS  Google Scholar 

  • Van Ryswyk H, Van Hecke GR (1991) Attaining optimal conditions: an advanced undergraduate experiment that introduces experimental design and optimization. J Chem Educ 68(10):878. https://doi.org/10.1021/ed068p878

    Article  Google Scholar 

  • Viola H, Wolfman C, de Stein ML, Wasowski C, Peña C, Medina JH, Paladín AC (1994) Isolation of pharmacologically active Benzodiazepine receptor ligands from Tilia tomentosa (Tiliaceae). J Ethnopharmacol 44:47–53. https://doi.org/10.1016/0378-8741(94)90098-1

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Zhong JJ (2009) Effect of initial ammonium concentration on taxoid production and biosynthesis genes expression profile in suspension cultures of Taxus chinensis cells. Eng Life Sci 9(3):261–266. https://doi.org/10.1002/elsc.200800109

    Article  CAS  Google Scholar 

  • Zurita-Valencia W, Gómez-Cruz JE, Atrián-Mendoza E, Hernández-García A, Granados-García ME, García-Magaña JJ, Salgado-Garciglia R, Sánchez-Vargas NM (2014) Establecimiento de un método eficiente de germinación in vitro y micropropagación del cirimo (Tilia mexicana Schlecht.) (Tiliaceae). Polibotanica 38:129–144

    Google Scholar 

Download references

Acknowledgements

This work was supported by Basic Grant 302000 from the Consejo Nacional de Ciencia y Tecnología, México (CONACyT-México) for the doctoral studies of Daniel Cisneros-Torres at the Biotechnology Doctoral Program of UAM-Iztapalapa and by Complementary Grant 99187269 from the Instituto Mexicano del Seguro Social (IMSS).

Author information

Authors and Affiliations

Authors

Contributions

As a Ph.D. student, Daniel Cisneros-Torres participated in all of the experimental work under the advice of the co-authors, in the collection, analysis, interpretation of the data, and the writing of the manuscript. Francisco Cruz-Sosa supervised the establishment of the factorial design experiments, provided scopoletin and quercetin 3-O-β-d-glucoside standards, and he was Daniel Cisneros-Torres’ thesis co-advisor. Manasés González-Cortazar participated in the extraction and in the establishment of analytical methods for compound quantification. Aurora Martínez-Trujillo participated in the concept and design of the factorial design and supported Daniel Cisneros-Torres in the statistical analyses. Pilar Nicasio-Torres supervised the establishment of the cell-suspension cultures and growth and production kinetics, extractions of biomasses; she was also Daniel Cisneros-Torres’s thesis co-advisor, in addition to participating in the writing of the manuscript and approving the final version of the manuscript.

Corresponding author

Correspondence to Pilar Nicasio-Torres.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Ali R. Alan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cisneros-Torres, D., Cruz-Sosa, F., González-Cortazar, M. et al. Enhancing the production of scopoletin and quercetin 3-O-β-d-glucoside from cell suspension cultures of Tilia americana var. mexicana by modulating the copper and nitrate concentrations. Plant Cell Tiss Organ Cult 139, 305–316 (2019). https://doi.org/10.1007/s11240-019-01683-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-019-01683-7

Keywords

Navigation