Skip to main content

Advertisement

Log in

Tissue culture and metabolome investigation of a wild endangered medicinal plant using high definition mass spectrometry

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

An increasing effort is dedicated to investigate the potential of native plants used in traditional medicine as a source of bioactive compounds for numerous industries. The bioprospection of the metabolome of medicinal and/or endangered plants has two important merits: confirming or revealing the biotechnological potential of that species, and assisting in its conservation. In addition, biotechnological techniques, such as tissue culture, are key strategies in conservation and multiplication of medicinal plants. This is the first in vitro development and non-targeted metabolome study by UPLC–QTOF–MSE of extracts from C. menthoides, an endangered medicinal plant. In vitro development investigation with a wide range of plant growth regulators resulted in maximum survival rate (81%) and the highest growth rate (1.74 cm ± 0.36) for plantlets cultured on Murashige and Skoog medium, supplemented with 1 µM gibberellic acid. Maximum rooting occurred on medium supplemented with 4.4 µM 6-benzyladenine, which also resulted in more leaves per plantlet (10.16 ± 1.7). We developed a protocol that can be used for the clonal propagation and ex situ conservation of this species. In terms of metabolome analysis, a total of 107 metabolites from several classes were detected and identified in its hydrophilic extract (HE), including organic acids and derivatives, glucosinolates, terpenes, phenolic compounds as well as other polar metabolites. The metabolites in HE with the greatest signal intensity included the isoquinoline alkaloid magnoflorine; the coumaric acid rosmarinic acid; the steroid-cardanolide convallatoxin; two anthraquinones including the poorly investigated ventinone A. Several molecules identified here carry potential pharmacological benefits such as anti-inflammatory and anticancer applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PGR:

Plant growth regulator

IAA:

Indole-3-acetic acid

BAP:

8-Benzylaminopurine

TDZ:

Thidiazuron

GA3:

Gibberellic acid

UPLC:

Ultra-performance liquid chromatography

Qq-TOF-MS:

Quadrupole time of flight mass spectrometry

ESI:

Electrospray ionization

LE:

Lipophilic extract

HE:

Hydrophlic extract

References

Download references

Acknowledgements

The authors are grateful to Prof. Dr. Agostini from Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, for his support in collecting and identifying the plant material; to Universidade Federal do Estado do Rio de Janeiro (UNIRIO) for scholarship; to Prof. Dr. Suellen Gomes Moreira from Federal Institute of Rio de Janeiro (IFRJ), Rio de Janeiro, Brazil, for helping in the development UPLC separation methodology; to Prof. Dr. André Ferreira from Oswaldo Cruz Foundation (FIOCRUZ) and Waters Corporation for logistical and technical support, respectively.

Funding

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) and Universidade Federal do Estado do Rio de Janeiro (Unirio).

Author information

Authors and Affiliations

Authors

Contributions

JPSO—performed tissue culture, extraction, identification and acquisition experiments; analysed data; prepared all figures and wrote the manuscript. OH—advise; helped in experimental design; manuscript correction and final approval. MM—advise for compounds identification; manuscript correction and final approval. MGBK—advise; helped in experimental design; planned and performed extraction experiments funding of the project; manuscript correction and final approval. MSLF—planned and performed experiments of sample acquisition for metabolomics; helped in experimental design; project's funding; manuscript correction and final approval. LCC—mass spectrometry equipments funding and final approval. AFM—planned and performed experiments of plant material cultivation and extraction assays; helped in sample preparation for metabolomics, sample acquisition for metabolomics, compounds identification; project`s funding; manuscript correction and final approval.

Corresponding author

Correspondence to A. F. Macedo.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Communicated by Sergio J. Ochatt.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, J.P.S., Hakimi, O., Murgu, M. et al. Tissue culture and metabolome investigation of a wild endangered medicinal plant using high definition mass spectrometry. Plant Cell Tiss Organ Cult 134, 153–162 (2018). https://doi.org/10.1007/s11240-018-1408-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-018-1408-7

Keywords

Navigation