Skip to main content
Log in

Production and conversion of haploid embryos in chickpea (Cicer arietinum L.) anther cultures using high 2,4-D and silver nitrate containing media

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Due to recalcitrant nature of chickpea (Cicer arietinum L.) to androgenesis, the production of double haploid plants has been only reported by Grewal et al. (Plant Cell Rep 28:1289–1299, 2009) using some physical stresses such as anther centrifugation and electrical shock. In the present study, we successfully obtained haploid plants from cultured anthers of two chickpea cultivars, Bivanij and Arman, using high 2,4-D and silver nitrate containing media without applying of these time and labor consuming stresses. For induction of androgenesis, different concentrations of 2, 4-D (0, 2, 5 and 10 mg/l) and silver nitrate (0, 5, 10, 15, 25 and 50 mg/l) were used in embryo development medium. In Bivanij cultivar, anther induction medium containing 10 mg/l 2,4-D and 15 mg/l silver nitrate produced the highest number of embryos (0.188) and regenerated plants (0.1) per each cultured anther, while the highest frequencies of embryos (0.1) and regenerated plants (0.075 and 0.063) were obtained from Arman cultivar when 10 mg/l 2,4-D was combined with 15 and 50 mg/l silver nitrate in anther culture medium, respectively. In second part of this study, different cold (4 °C for 4 and 7 days) and heat (30 °C for 10 days, 32 °C for 2 days and 35 °C for 8 h) pretreatments were applied on cultured anthers of Bivanij cultivar. Incubation of cultured anthers at 32 °C for 2 days significantly enhanced the rate of embryo formation up to 0.222 embryos per each anther, while the highest number of regenerated plants/anther (0.0332) was obtained when cold treated anthers at 4 °C for 7 days incubated at 30 °C for 10 days. Taken together, these results provide a good basis for large-scale generation of DH plants in this important legume species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DH:

Doubled-haploid

2,4-D:

2,4-Dichlorophenoxyacetic acid

BAP:

6-Benzylaminopurine

NAA:

α-Naphtaleneacetic acid

GA3:

Gibberellic acid

IAA:

Indole acetic acid

ABA:

Abscisic acid

DAPI:

4,6-diamidino-2-phenylindole

References

  • Abdollahi MR, Darbandi M, Hamidvand Y, Majdi M (2015) The influence of phytohormones, wheat ovary co-culture, and temperature stress on anther culture response of watermelon (Citrullus lanatus L.). Braz J Bot 38(3):447–456

    Article  Google Scholar 

  • Ardebili SH, Shariatpanahi ME, Amiri R, Emamifar M, Nematzadeh G, Noori SAS, Oroojloo M, Heberle-Bors E (2011) Effect of 2,4-D as a novel inducer of embryogenesis in microspores of Brassica napus L. Czech J Genet Plant Breed 47:114–122

    Article  CAS  Google Scholar 

  • Bailey MB, Boerma HR, Parrot WA (1993) Genotypes effects on proliferative embryogenesis and plant regeneration of soybean. In Vitro Cell Dev Biol 29:102–108

    Article  Google Scholar 

  • Beyer EM (1976) A potent inhibitor of ethylene action in plants. Plant Physiol 58:268–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biddington NL, Robinson TH (1991) Ethylene production during anther culture of Brussel sprouts (Brassica oleracea var. gemmifera) and its relationship with factors that affect embryo production. Plant Cell Tissue Cult 25:169–177

    CAS  Google Scholar 

  • Bobkov SV (2010) Isolated pea anther culture. Russ Agric Sci 6:413–416

    Article  Google Scholar 

  • Bobkov S (2014) Obtaining calli and regenerated plants in anther cultures of pea. Czech J Genet Plant Breed 50:123–129

    Article  Google Scholar 

  • Cai LH, Lei JJ, Chen GJ, Zeng GP, Cao BH (2005) Effects of several factors on anther culture of colored bell pepper. China Watermelon Muskmelon 4:16–19 (Chinese)

    Google Scholar 

  • Croser JS, Lulsdorf MM, Davies PA, Clarke HJ, Bayliss KL, Mallikarjuna N, Siddique KHM (2006) Toward doubled haploid production in the fabaceae: progress, constraints, and opportunities. Crit Rev Plant Sci 25:139–157

    Article  Google Scholar 

  • Croser JS, Lülsdorf MM, Grewal RK, Usher KM, Siddique KHM (2011) Isolated microspore culture of chickpea (Cicer arietinum L.): induction of androgenesis and cytological analysis of early haploid divisions. In Vitro Cell Dev Biol Plant 47:357–368

    Article  CAS  Google Scholar 

  • Delaitre C, Ochatt SJ, Deleury E (2001) Electroporation modulates the embryogenic responses of asparagus (Asparagus officinalis L.) microspores. Protoplasma 216:39–46

    Article  CAS  PubMed  Google Scholar 

  • Deshpande S, Hall JC (2000) Auxinic herbicide resistance may be modulated at the auxin-binding site in wild mustard (Sinapis arvensis L.): a light scattering study. Pestic Biochem Physiol 66:41–48

    Article  CAS  Google Scholar 

  • Eshaghi ZC, Abdollahi MR, Moosavi SS, Deljou A, Seguí-Simarro JM (2015) Induction of androgenesis and production of haploid embryos in anther cultures of borage (Borago officinalis L.). Plant Cell Tissue Organ Cult 122:321–329

    Article  CAS  Google Scholar 

  • Feher A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tiss Org Cult 74:201–228

    Article  CAS  Google Scholar 

  • Gatti I, Guindon F, Bermeja C, Cspasito A, Cointry E (2016) In vitro tissue culture in breeding programs of leguminous pulses: use and current status. Plant Cell Tiss Organ Cult 127:543–559

    Article  CAS  Google Scholar 

  • Goldsworthy A, Mina MG (1991) Electrical patterns of tobacco cells in media containing indole-3-acetic acid or 2,4-dichloro-phenoxyacetic acid. Planta 183:373–386

    Article  Google Scholar 

  • Grewal RK, Lulsdorf M, Croser J, Ochatt S, Vandenberg A, Warkentin T (2009) Doubled-haploid production in chickpea (Cicer arietinum L.): role of stress treatments. Plant Cell Rep 28:1289–1299

    Article  CAS  PubMed  Google Scholar 

  • Grossmann K (2009) Auxin herbicides: current status of mechanism and mode of action. Pest Manag Sci 66:13–120

    Google Scholar 

  • Hoekstra S, Van Bergen S, Van Brouwershaven IR, Schilperoort RA, Heidekamp F (1996) The interaction of 2,4-D application and mannitol pre-treatment in anther and microspore culture of Hordeum vulgare L. cv. Igri. J Plant Physiol 148:696–700

    Article  CAS  Google Scholar 

  • Hoveida ZS, Abdollahi MR, Mirzaie-Asl A, Moosavi SS, Seguí-Simarro JM (2017) Production of doubled haploid plants from anther cultures of borage (Borago officinalis L.) by the application of chemical and physical stress. Plant Cell Tiss Organ Cult. https://doi.org/10.1007/s11240-017-1233-4

    Google Scholar 

  • Jäättelä M, Wissing D, Kokholm K, Kallunki T, Egeblad M (1998) HSP70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J 17:6124–6134

    Article  PubMed  PubMed Central  Google Scholar 

  • Khedar OP, Singh RV, Shrimali M, Singh NP (2008) Pulses: status and cultivation technology. Aavishkar Publishers, Jaipour

    Google Scholar 

  • Khush GS, Virmani SS (1996) Haploids in plant breeding. In: Mohan Jain S, Sopory SK, Veilleux RE (eds) In vitro haplioid production in higher plants, volume 1: fundamental aspects and methods. Kluwer Academic Publishers, Boston, pp 11–34

    Chapter  Google Scholar 

  • Kiviharju EM, Tauriainen AA (1999) 2,4-Dichlorophe-noxyacetic acid and kinetin in anther culture of cultivated and wild oats and their interspecific crosses: plant regeneration from Avena. sativa L. Plant Cell Rep 18:582–588

    Article  CAS  Google Scholar 

  • Kozak K, Galek R, Waheed MT, Sawicka-Sienkiewicz E (2012) Anther culture of Lupinus angustifolius: callus formation and the development of multicellular and embryo-like structures. Plant Growth Regul 66:145–153

    Article  CAS  Google Scholar 

  • Kruczkowska H, Pawlowska H, Skucińska B (2005) Effect of 2,4-D concentration on the androgenic response in anther culture of barley. Cereal Res Commun 33:727–732

    Article  CAS  Google Scholar 

  • Li J, Huang Q, Sun M, Zhang T, Li H, Chen B, Xu K, Gao G, Li F, Yan G, Qiao J, Cai Y, Wu X (2016) Global DNA methylation variations after short-term heat shock treatment in cultured microspores of Brassica napus cv. Topas Sci Rep 6:38401

    Article  CAS  PubMed  Google Scholar 

  • Lulsdorf MM, Croser JS, Ochatt S (2011) Androgenesis and doubled haploid production in food legumes. In: Pratap A, Kumar J (eds) Biology and breeding of food legumes. CABI, Oxfordshire, pp 336–347

    Google Scholar 

  • Lulsdorf M, Yuan H, Slater S, Vandenberg A, Han X, Zaharia LI (2012) Androgenesis-inducing stress treatments change phytohormone levels in anthers of three legume species (Fabaceae). Plant Cell Rep 31:1255–1267

    Article  CAS  PubMed  Google Scholar 

  • Na H, Kwak JH, Chun C (2011) The effect of plant growth regulators, activated charcoal and AgNO3 on microspore derived embryo formation in broccoli (Brassica oleracea L. var. italica). Hort Environ Biotechnol 52:524–529

    Article  CAS  Google Scholar 

  • Ochatt S (2015) Agroecological impact of an in vitro biotechnology approach of embryo development and seed filling in legumes. Agron Sustain Dev 35:535–552

    Article  CAS  Google Scholar 

  • Ochatt S, Pech C, Grewal R, Conreux C, Lulsdorf M, Jacas L (2009) Abiotic stress enhances androgenesis from isolated microspores of some legume species (Fabaceae). J Plant Physiol 166:1314–1328

    Article  CAS  PubMed  Google Scholar 

  • Ockendon DJ, McClenaghan R (1993) Effect of silver nitrate and 2,4-D on anther culture of Brussels sprouts (Brassica oleracea var. gemmifera). Plant Cell Tissue Organ Cult 32:41–46

    Article  CAS  Google Scholar 

  • Perera PIP, Yakandawala DMD, Hocher V, Verdeil JL, Weerakoon LK (2009) Effect of growth regulators on microspore embryogenesis in coconut anthers. Plant Cell Tiss Org Cult 96(2):171–180

    Article  CAS  Google Scholar 

  • Purnhauser L, Medgyesy P, Czaks M, Dix P, Marton L (1987) Stimulation of shoot regeneration in Triticum aestivum and Nicotiana plumbaginifolia Viv. tissue culture using ethylene inhibition AgNO3. Plant Cell Rep 6:1–4

    Article  CAS  PubMed  Google Scholar 

  • Ran Y, Dai CX (1993) Studies on the effects of AgNO3 on inducing dihaploid and monoploid in vitro by anther culture in cultivated potato. Acta Agric Boreali-occidentalis Sin 2:43–47 (Chinese).

    Google Scholar 

  • Ribalta FM, Croser JS, Ochatt SJ (2012) Flow cytometry enables identification of sporophytic eliciting stress treatments in gametic cells. J Plant Physiol 169:104–110

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues LR, Terra TF, Bered F, Bodanese-Zanettini MH (2004) Origin of embryo-like structures in soybean anther culture investigated using SSR marker. Plant Cell Tiss Org Cult 77:287–289

    Article  CAS  Google Scholar 

  • Schauf CL, Bringle B, Stillwell W (1987) Membrane-directed effects of the plant hormones abscisic acid, indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid. Biochem Biophys Res Commun 143:1085–1091

    Article  CAS  PubMed  Google Scholar 

  • Segui-Simarro JM, Testillano PS, Risueno MC (2003) HSP70 and HSP90 change their expression and subcellular localization after microspore embryogenesis induction in Brassica napus L. J Struct Biol 142:379–391

    Article  CAS  PubMed  Google Scholar 

  • Shahvali-Kohshour R, Moieni A, Baghizadeh A (2013) Positive effects of cold pretreatment, iron source, and silver nitrate on anther culture of strawberry (Fragaria × ananassa Duch.). Plant Biotechnol Rep 7:481–488

    Article  Google Scholar 

  • Shariatpanahi ME, Bal U, Heberle-Bors E, Touraev A (2006) Stresses applied for the re-programming of plant microspores towards in vitro embryogenesis. Physiol Plant 127:519–534

    Article  CAS  Google Scholar 

  • Simmonds DH, Keller WA (1999) Significance of preprophase bands of microtubules in the induction of microspore embryogenesis of Brassica napus. Planta 208:383–391

    Article  CAS  Google Scholar 

  • Telmer CA, Newcom W, Simmonds DH (1993) Microspore development in Brassica napus and the effect of high temperature on division in vivo and in vitro. Protoplasma 172:154–165

    Article  Google Scholar 

  • Touraev A, Vicente O, Herberle-Bors E (1997) Initiation of microspore embryogenesis by stress. Trends Plant Sci 2:297–302

    Article  Google Scholar 

  • Wang Q, Ran Y, Yu B, Chen X, Wang D (2014) Embryogenesis and haploid induction using anther culture in lovage (Levisticum officinale WDJ Koch). In Vitro Cell Dev Biol Plant 50:525–533

    Article  Google Scholar 

  • Wei YD, Zheng HG, Hall JC (2000) Role of auxinic herbicide induced ethylene on hypocotyl elongation and root/hypocotyl radial expansion. Pest Manag Sci 56:377–387

    Article  CAS  Google Scholar 

  • Würschum T (2015) Ethylene inhibitors improve efficiency of microspore embryogenesis in hexaploid triticale. Plant Cell Tissue Organ Cult 122:751–757

    Article  Google Scholar 

  • Zheng MY, Konzak CF (1999) Effect of 2,4-dichlorophenoxyacetic acid on callus induction and plant regeneration in anther culture of wheat (Triticum aestivum L.). Plant Cell Rep 19:69–73

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: MRA. Analyzed the data: MRA, SR. Contributed reagents/materials/analysis tools: MRA. Wrote the paper: MRA, SR. Performed the experiments: SR.

Corresponding author

Correspondence to Mohammad Reza Abdollahi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Sergio J. Ochatt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdollahi, M.R., Rashidi, S. Production and conversion of haploid embryos in chickpea (Cicer arietinum L.) anther cultures using high 2,4-D and silver nitrate containing media. Plant Cell Tiss Organ Cult 133, 39–49 (2018). https://doi.org/10.1007/s11240-017-1359-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-017-1359-4

Keywords

Navigation