Skip to main content
Log in

In vitro propagation via organogenesis and embryogenesis of Cyrtanthus mackenii: a valuable threatened medicinal plant

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Efficient and simple, organogenesis (direct and indirect) and somatic embryogenesis (cell suspension) systems were developed for in vitro propagation of Cyrtanthus mackenii, a valuable economic plant from leaf explants cultured on Murashige and Skoog (MS) medium supplemented with various concentrations and combinations of sucrose, plant growth regulators (PGRs), glutamine, phloroglucinol (PG) and 6-(2-hydroxy-3-methylbenzylamino) purine (PI55). MS medium solidified with 8 g L−1 agar (MSS) containing 40 g L−1 sucrose, 10 µM picloram, 2.5 µM benzyladenine (BA) and 20 µM glutamine produced a higher number of shoots from white nodular callus. This was however, not significantly different to direct shoot regeneration on media containing 10 µM picloram, 2.5 µM BA and a reduced concentration of sucrose and glutamine. The regenerated shoots were rooted best with MSS medium incorporating 10 µM PG. The number of somatic embryos (SEs) were significantly higher using liquid MS medium containing 30 g L−1 sucrose, 0.5 µM picloram, 1 µM thidiazuron or BA and 3 µM glutamine or gibberellic acid. The embryos were germinated in PGR-free MSS medium. All plantlets were successfully acclimatized in the greenhouse. Histological studies confirmed the different developmental stages and bipolar structure of SE. The organogenesis and somatic embryogenesis protocols provides a system for large scale propagation and germplasm conservation. Developed protocols can be used for clonal production and pharmacological and genetic transformation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Angulo ME, Colque R, Viladomat F, Bastida J, Codina C (2003) In vitro production of bulblets of Cyrtanthus loddigesianus and Cyrtanthus speciosus. J Horticult Sci Biotechnol 78:441–446

    Article  Google Scholar 

  • Bakhshaie M, Babalar M, Mirmasoumi M, Khalighi A (2010) Somatic embryogenesis and plant regeneration of Lilium ledebourii (Baker) Boiss., an endangered species. Plant Cell Tissue Organ Cult 102:229–235

    Article  CAS  Google Scholar 

  • Baskaran P, Van Staden J (2012) Somatic embryogenesis of Merwilla plumbea (Lindl.) Speta. Plant Cell Tissue Organ Cult 109:517–524

    Article  CAS  Google Scholar 

  • Baskaran P, Van Staden J (2017) Ultrastructure of somatic embryo development and plant propagation for Lachenalia montana. S Afr J Bot 109:269–274

    Article  CAS  Google Scholar 

  • Baskaran P, Singh S, Van Staden J (2013) In vitro propagation, proscillaridin A production and antibacterial activity in Drimia robusta. Plant Cell Tissue Organ Cult 114:259–267

    Article  CAS  Google Scholar 

  • Baskaran P, Kumari A, Naidoo D, Van Staden J (2016) In vitro propagation and ultrastructural studies of somatic embryogenesis of Ledebouria ovatifolia. In Vitro. Cell Dev Biol Plant 52:283–292

    Article  CAS  Google Scholar 

  • Coruzzi G, Last R (2000) Amino acids. In: Buchanan B, Groissem W, Jones R (eds) Biochemistry & Biology of Plants. American Society of Plant Physiologists, Rockville, pp 358–410

    Google Scholar 

  • Du Plessis N, Duncan GD (1989) Bulbous plants of southern Africa. A guide to their cultivation and propagation. Tafelberg Publishers, Cape Town, p. 192

    Google Scholar 

  • Duncan GD (2002) Cyrtanthus: plants of South Africa. Kirstenbosch National Botanical Garden, South Africa

    Google Scholar 

  • Elgorashi EE, Van Staden J (2003) Alkaloids from Cyrtanthus falcatus. S Afr J Bot 69:593–594

    Article  CAS  Google Scholar 

  • George EF, Hall MA, De Klerk GJ (2008) Plant propagation by tissue culture. The background, vol 1. Springer, Dordrecht

    Google Scholar 

  • Hong J, Lee AK (2012) Micropropagation of Cyrtanthus ‘OrangeGem’ × C. Eucallus hybrid. Sci Hortic 142:174–179

    Article  CAS  Google Scholar 

  • Hutchings A, Scott AH, Lewis G, Cunningham A (1996) Zulu medicinal plants: an inventory. University of Natal Press, Pietermaritzburg

    Google Scholar 

  • Jain RK, Davey MR, Cocking EC, Wu R (1997) Carbohydrate and osmotic requirements for high frequency plant regeneration from protoplast-derived colonies of indica and japonica rice varieties. J Exp Bot 48:751–758

    Article  CAS  Google Scholar 

  • Jain N, Bairu MW, Stirk WA, Van Staden J (2009) The effect of medium, carbon source and explant on regeneration and control of shoot-tip necrosis in Harpagophytum procumbens. S Afr J Bot 75:117–121

    Article  Google Scholar 

  • Lu CY, Vasil V, Vasil IK (1983) Improved efficiency of somatic embryogenesis and plant regeneration in tissue cultures of maize (Zea mays L.). Theor Appl Genet 66:285–289

    CAS  PubMed  Google Scholar 

  • McAlister BG, Strydom A, Van Staden J (1998) In vitro propagation of some Cyrtanthus species. S Afr J Bot 64:228–231

    Article  Google Scholar 

  • Morán GP, Colque R, Viladomat F, Bastida J, Codina C (2003) Mass propagation of Cyrtanthus clavatus and Cyrtanthus spiralis using liquid medium culture. Sci Hortic 98:49–60

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ncube B, Finnie JF, Van Staden J (2015) In vitro regeneration of Cyrtanthus species: ornamental plants with medicinal benefits. In Vitro Cell Dev Biol Plant 51:42–51

    Article  CAS  Google Scholar 

  • Neto VBP, Otoni WC (2003) Carbon sources and their osmotic potential in plant tissue culture: does it matter? Sci Hortic 97:193–202

    Article  Google Scholar 

  • Nishimura CH, Ohashi Y, Sato S, Kato T, Tabata S, Ueguchi CH (2004) Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis. Plant Cell 16:1365–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nisler J, Zatloukal M, Popa I, Dolezˇal K, Strnad M, Spichal M (2010) Cytokinin receptor antagonists derived from 6-benzylaminopurine. Phytochem 71:823–830

    Article  CAS  Google Scholar 

  • Reid C, Dyer RA (1984) A review of the southern African species of Cyrtanthus. The American Plant Life Society, La Jolla

    Google Scholar 

  • Rizvi MZ, Kukreja AK, Bisht NS (2010) In vitro propagation of an endangered medicinal herb Chlorophytum borivilianum Sant. et Fernand. through somatic embryogenesis. Physiol Mol Biol Plants 16:249–257

    Article  PubMed  PubMed Central  Google Scholar 

  • SANBI (2016) Statistics: red list of South African Plants version 2016.1. http://redlist.sanbi.org/species.php

  • Smith LG (2001) Plant cell division: building walls in the right places. Nat Rev Mol Cell Biol 2:33–39

    Article  CAS  PubMed  Google Scholar 

  • Tanahashi T, Poulev A, Zenk MH (1990) Radioimmunoassay for the quantitative determination of galanthamine. Planta Med 56:77–81

    Article  CAS  PubMed  Google Scholar 

  • Thompson D, Harrington F, Douglas G, Hennerty MJ, Nakhshab N, Long R (2001) Vegetative propagation techniques for oak, ash, sycamore and spruce. COFORD, Dublin

    Google Scholar 

  • Vasil IK (1988) Progress in the regeneration and genetic manipulation in crops. Bio Technol 6:397–402

    Google Scholar 

  • Viladomat F, Bastida J, Codina C, Nair JJ, Campbell WE (1997) Alkaloids of the South African Amaryllidaceae. In: Pandalai SG (ed) Recent research developments in phytochemistry. Research Signpost, Trivandrum, pp 131–171

    Google Scholar 

  • Watt JM, Breyer-Brandwijk MG (1962) The medicinal and poisonous plants of Southern and Eastern Africa, 2nd ed. Livingstone, London

    Google Scholar 

  • Wetschnig W, Brosch U, Andriatiana J, Dutta S, Knirsch W (2013) In vitro propagation and ex situ conservation of Drimia cryptopoda and Ledebouria nossibeensis, two endangered endemic Hyacinthaceae from Madagascar. Scr Bot Belg 50:33–36

    Google Scholar 

  • Yücesan BB, Çiçek F, Gürel E (2014) Somatic embryogenesis and encapsulation of immature bulblets of an ornamental species, grape hyacinths (Muscari armeniacum Leichtlin ex Baker). Turk J Agric For 38:716–722

    Article  Google Scholar 

  • Zimmerman RH (1984) Rooting apple cultivars in vitro: interactions among light, temperature, phloroglucinol and auxin. Plant Cell Tissue Organ Cult 3:301–311

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The University of KwaZulu-Natal (UKZN), Pietermaritzburg is gratefully acknowledged for financial support, as well as the Microscopy & Microanalysis Unit (MMU), UKZN, Pietermaritzburg for microscopic assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Van Staden.

Ethics declarations

Conflict of interest

The authors confirm that there is no conflict of interest.

Additional information

Communicated by M. I. Beruto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, A., Baskaran, P. & Van Staden, J. In vitro propagation via organogenesis and embryogenesis of Cyrtanthus mackenii: a valuable threatened medicinal plant. Plant Cell Tiss Organ Cult 131, 407–415 (2017). https://doi.org/10.1007/s11240-017-1293-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-017-1293-5

Keywords

Navigation