Skip to main content
Log in

Somatic embryogenesis and plant regeneration of blackberry using the thin cell layer technique

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The present study is the first to report somatic embryogenesis (SE) based on a plant regeneration protocol for blackberry. It uses transverse thin cell layer technique (tTCL). Two blackberry genotypes, ‘High prickle’ (Rubus sanctus) and ‘Low prickle’ (Rubus hirtus) were used as explants. The explants were soaked in ascorbic and citric acids (60 mg l−1 each) solution prior to culture on Murashige and Skoog (MS) medium containing 2.32 μM kinetin (KIN), 2.69 μM α-naphthaleneacetic acid (NAA) and 8.88 6-benzyladenine (BA). This not only reduced the phenolic compounds (in ‘High prickle’), but also produced friable and yellow-pale green calluses. The highest level of embryogenic callus initiation in both genotypes occurred in half strength MS medium containing 60 g l−1 sucrose, 9.76 μM KIN and 7.99 μM BA. The MS medium fortified with 7.57 μM abscisic acid (ABA) and malt extract (700 mg l−1) or glutamine (400 mg l−1) encouraged the formation and development of embryos on calluses originating from dermal parts of ‘High prickle’ explants. Yasuda (YA) medium enrichd with 8.88 μM BA, 10.84 μM NAA and glycerol (2%) promoted embryo development and shoot regeneration on calluses originating from dermal parts of ‘High prickle’ and ‘Low prickle’ explants respectively. Germination of embryos and growth of normal plantlets occurred on half strength MS medium containing 4.88 μM BA, 2.02 μM gibberellic acid (GA3) and 0.05 μM NAA. Histological evaluations confirmed the successful occurrence of the different stages of embryogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

AC:

Activated charcoal

AS:

Ascorbic acid

BA:

6-Benzyladenine

CIT:

Citric acid

Cys:

Cysteine

GA3 :

Gibberellic acid

KIN:

Kinetin

ME:

Malt extract

MS:

Murashige and Skoog

NAA:

α-Naphthaleneacetic acid

PVP:

Polyvinyl pyrolidine

tTCL:

Transverse thin cell layers

TP:

Turmeric powder

YA:

Yasuda

References

  • Akula A, Akula C, Bateson M (2000) Betaine a novel candidate for rapid induction of somatic embryogenesis in tea (Camellia sinensis (L.) O. Kuntze). Plant Growth Regul 30:241–246. doi:10.1007/978-94-011-4774-3_15

    Article  CAS  Google Scholar 

  • Anthony J, Senaratna T, Dixon K, Sivasithamparam K (2004) The role of antioxidants for initiation of somatic embryos with Conostephium pendulum (Ericaceae). Plant Cell Tissue Organ Cult 78:247–252. doi:10.1023/B:TICU.0000025661.56250.b4

    Article  CAS  Google Scholar 

  • Arturo RD, Andrea A, Pedro R, Bryan R, Gooty JM (2016) Obtaining protoplasts from leaf tissue plantlets of Rubus glaucus Benth (Blackberry) to develop proembryos. Indian J Sci Technol 9:1–8. doi:10.17485/ijst/2016/v9i10/81983

    Article  Google Scholar 

  • Bellettre A, Couillerot J-P, Vasseur J (1999) Effects of glycerol on somatic embryogenesis in Cichorium leaves. Plant Cell Rep 19:26–31. doi:10.1007/s002990050705

    Article  CAS  Google Scholar 

  • Carvalho MAF et al. (2013) Morphogenetic potential of native passion fruit (Passiflora gibertii NE Brown.) calli. Brazilian J Bot 36:141–151. doi:10.1007/s40415-013-0015-4

    Article  Google Scholar 

  • Charrière F, Sotta B, Miginiac É, Hahne G (1999) Induction of adventitious shoots or somatic embryos on in vitro cultured zygotic embryos of Helianthus annuus: variation of endogenous hormone levels. Plant Physiol Biochem 37:751–757

    Article  Google Scholar 

  • Crandall PC (1995) Bramble production. The management and marketing of raspberries and blackberries. Food Products Press, New York

    Google Scholar 

  • Da Silva JAT (2003) Thin cell layer technology in ornamental plant micropropagation and biotechnology Afr J Biotechnol 2:683–691. http://www.academicjournals.org/AJB

  • Da Silva J, Van K, Biondi S, Nhut DT, Altamura MM (2007) Thin cell layers: developmental building blocks in ornamental biotechnology. Floric Ornam Biotechnol 1:1–13. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.587.2503&rep=rep1&type=pdf

  • Daigny G, Paul H, Sangwan R, Sangwan-Norreel B (1996) Factors influencing secondary somatic embryogenesis in Malus x domestica Borkh.(cv ‘Gloster 69’). Plant Cell Rep 16:153–157

    Article  CAS  PubMed  Google Scholar 

  • Dodeman VL, Ducreux G, Kreis M (1997) Zygotic embryogenesis versus somatic embryogenesis. J Exp Bot 48:1493–1509. https://pdfs.semanticscholar.org/e1cb/06bc8b9c56f7ab60761cf77f49362c55f130.pdf

  • Druart P (1989) Improvement of somatic embryogenesis of the cherry dwarf rootstock INMIL/GM9 by the use of different carbon sources. In: proceedings of the international symposium on in vitro culture and horticultural breeding 280, pp 125–130. doi:10.17660/ActaHortic.1990.280.19

  • Etienne H, Montoro P, Michaux-Ferriere N, Carron M (1993) Effects of desiccation, medium osmolarity and abscisic acid on the maturation of Hevea brasiliensis somatic embryos. J Exp Bot 44:1613–1619

    Article  CAS  Google Scholar 

  • Fehér A (2005) Why somatic plant cells start to form embryos? Somatic embryogenesis. Springer, Berlin, pp 85–101. http://link.springer.com/chapter/10.1007%2F7089_019#page-2

  • Fiola JA, Swartz H (1985) Somatic embryogenesis, organogenesis and proliferation in vitro from Rubus embryos. In: Proceedings of the IV international rubus and ribes symposium 183, pp 91–98. doi:10.17660/ActaHortic.1986.183.11

  • Francis D, Sorrell DA (2001) The interface between the cell cycle and plant growth regulators: a mini review. Plant Growth Regul 33:1–12

    Article  CAS  Google Scholar 

  • Gaj MD (2004) Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regul 43:27–47

    Article  CAS  Google Scholar 

  • George EF, Hall MA, De Klerk G-J (2008) Plant tissue culture procedure-background. In: Plant propagation by tissue culture. Springer, Berlin, pp 1–28. https://download.e-bookshelf.de/download/0000/0038/77/L-G-0000003877-0002333095.pdf

  • Gingas V, Stokes B (1993) Rubus plant regeneration via asexual embryogenesis. HortScience 28:58. http://hortsci.ashspublications.org/content/28/1/58.full.pdf+html

  • Jennings D (1988) Raspberries and blackberries: their breeding, diseases and growth. Academic Press, Cambridge. https://www.cabdirect.org/cabdirect/abstract/19901610038

  • Jha T, Roy S, Mitra G (1982) Brief review on in vitro studies on umbelliferous spice plants. In: tissue culture of economically important plants: proceedings of the international symposium held at the Botany Department, National University of Singapore, Singapore, 28–30 April 1981/edited by AN Rao, 1982. http://agris.fao.org/agris-search/search.do?recordID=US201301415723

  • Johansen DA (1940) Plant microtechnique. McGraw-Hill, New York

    Google Scholar 

  • Kavathekar A, Ganapathy P, Johri B (1978) In vitro responses of embryoids of Eschscholzia californica. Biol Plant 20:98–106

    Article  CAS  Google Scholar 

  • Klimaszewska K, Smith DR (1997) Maturation of somatic embryos of Pinus strobus is promoted by a high concentration of gellan gum. Physiol Plant 100:949–957

    Article  CAS  Google Scholar 

  • López Arnaldos T, Muñoz R, Ferrer MA, Calderón AA (2001) Changes in phenol content during strawberry (Fragaria × ananassa, cv. Chandler) callus culture. Physiol Plant 113:315–322

    Article  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nishiwaki M, Fujino K, Koda Y, Masuda K, Kikuta Y (2000) Somatic embryogenesis induced by the simple application of abscisic acid to carrot (Daucus carota L.) seedlings in culture. Planta 211:756–759

    Article  CAS  PubMed  Google Scholar 

  • Nørgaard JV (1997) Somatic embryo maturation and plant regeneration in Abies nordmanniana Lk. Plant Sci 124:211–221

    Article  Google Scholar 

  • Poudyal BK, Du G, Zhang Y, Liu J, Shi Q (2008) Studies on browning problem and phenols content on shoots of Yali, Aikansui and Abbe Fetel pears for in vitro culture. Front Agric China 2:321–330

    Article  Google Scholar 

  • Raghavan V (1964) Interaction of growth substances in growth and organ initiation in the embryos of Capsella. Plant Physiol 39:816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reidiboym-Talleux L, March GD (1999) Lipid and fatty acid composition in non-embryogenic calli and embryogenic tissues in wild cherry (Prunus avium). Physiol Plant 105:513–520

    Article  CAS  Google Scholar 

  • Rijven AHGC (1952) In vitro studies on the embryo of Capsella bursa-pastoris. Acta Botanica Neerlandica 1:157–200. doi:10.1111/j.1438-8677.1952.tb00007.x

    Article  Google Scholar 

  • Senger S, Mock H-P, Conrad U, Manteuffel R (2001) Immunomodulation of ABA function affects early events in somatic embryo development. Plant Cell Rep 20:112–120

    Article  CAS  Google Scholar 

  • Sharma RR (1994) In vivo and in vitro polyphenol oxidase activity in grape (Vitis vinifera L.). Thesis, Post Graduate School, IARI, New Delhi

  • Skirvin RM, Chu MC (1979) In vitro propagation of ‘forever yours’ rose. HortScience 14:608–610

    Google Scholar 

  • Smirnoff N (1996) Botanical briefing: the function and metabolism of ascorbic acid in plants. Ann Bot 78:661–669

    Article  CAS  Google Scholar 

  • Strickland SG, Nichol JW, McCall CM, Stuart DA (1987) Effect of carbohydrate source on alfalfa somatic embryogenesis. Plant Sci 48:113–121

    Article  CAS  Google Scholar 

  • Súkeníková M, Libiaková G, Moravčíková J, Hricová A, Gajdošová A (2015) Agrobacterium tumefaciens-mediated transformation of blackberry (Rubus fruticosus L.). Plant Cell Tiss Organ Cult 120:351–354. doi:10.1007/s11240-014-0569-2

    Article  Google Scholar 

  • Swartz HJ, Bors R, Mohamed F, Naess SK (1990) The effect of in vitro pretreatments on subsequent shoot organogenesis from excised Rubus and Malus leaves. Plant Cell Tissue Org Cult 21:179–184

    Article  CAS  Google Scholar 

  • Thorpe TA (1995) In vitro embryogenesis in plants. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  • Vujović T, Ružić Đ, Cerović R, Momirović GÅ (2010) Adventitious regeneration in blackberry (Rubus fruticosus L.) and assessment of genetic stability in regenerants. Plant Growth Regul 61:265–275. doi:10.1007/s10725-010-9474-9

    Article  Google Scholar 

  • Yasuda T, Fujii Y, Yamaguchi T (1985) Embryogenic callus induction from Coffea arabica leaf explants by benzyladenine. Plant Cell Physiol 26:595–597

    Article  CAS  Google Scholar 

  • Zhou B, Wei X, Wang R, Jia J (2010) Quantification of the enzymatic browning and secondary metabolites in the callus culture system of Nigella glandulifera Freyn et Sint. Asian J Tradit Med 5:109–116 http://218.25.35.236:8080/Jwk_yzctyy/EN/Y2010/V5/I3/109

Download references

Acknowledgements

We would like to thank Ali Pourkhaloee for his scientific advices. We also like to thank Mohsen Hamedpour-Darabi for assisting in editing the English of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhtar Shekafandeh.

Additional information

Communicated by Barbara M. Reed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabooni, N., Shekafandeh, A. Somatic embryogenesis and plant regeneration of blackberry using the thin cell layer technique. Plant Cell Tiss Organ Cult 130, 313–321 (2017). https://doi.org/10.1007/s11240-017-1225-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-017-1225-4

Keywords

Navigation