Skip to main content
Log in

Genome-wide analysis of the lectin receptor-like kinase family in foxtail millet (Setaria italica L.)

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

It is reported that lectin receptor-like kinases (LecRLKs) play crucial roles in plant responses to diverse environmental. Hence, a comprehensive genome-wide study of the LecRLK genes was conducted in foxtail millet (Setaria italica L.). In the present study, a total of 113 LecRLK genes including 59 G-type, 53 L-type, and 1 C-type LecRLKs were retrieved from foxtail millet genome. We sub-grouped the G- and the L-type LecRLKs into 11 (Groups I–XI) and 10 (Groups I–X) distinct sub-families, respectively, on the basis of their phylogenetic relationships. These 113 LecRLK genes were located on 8 of the 9 foxtail millet chromosomes. Duplication analysis revealed that tandem duplications were common in the LecRLK genes family. Eighteen putative drought-induced LecRLK genes were identified from a comparison of de novo transcriptome sequencing data for foxtail millet plants that had been treated with or without drought conditions. Expression profiling of the 18 candidate LecRLK in plants subjected to PEG-6000 simulated drought and high temperature conditions showed that LecRLKs might play important roles in abiotic stress responses. The Si032100m.g gene was selected for further tolerance assays. Overexpression of the Si032100m.g gene improved the drought tolerance of Arabidopsis plants. The present study of the structural features, chromosome location, duplication analysis, and expression profiling of the LecRLK gene family establishes a foundation for further research into the functions of the LecRLK proteins of foxtail millet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • André S, Siebert HC, Nishiguchi M, Tazaki K, Gabius HJ (2005) Evidence for lectin activity of a plant receptor-like protein kinase by application of neoglycoproteins and bioinformatic algorithms. Biochim Biophys Acta 1725:222–232

    Article  PubMed  Google Scholar 

  • Arnaud D, Desclos-Theveniau M, Zimmerli L (2012) Disease resistance to Pectobacterium carotovorum is negatively modulated by the Arabidopsis Lectin Receptor Kinase LecRK-V.5. Plant Signal Behav 7:1070–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C R Acad Sci 316:1194–1199

    CAS  Google Scholar 

  • Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep M, Feng L, Vaughn JN, Grimwood J, Jenkins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang X, Wu X, Mitros T, Triplett J, Yang X, Ye CY, Mauro-Herrera M, Wang L, Li P, Sharma M, Sharma R, Ronald PC, Panaud O, Kellogg EA, Brutnell TP, Doust AN, Tuskan GA, Rokhsar D, Devos KD (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol 30:555–561

    Article  CAS  PubMed  Google Scholar 

  • Bouwmeester K, Govers F (2009) Arabidopsis L-type lectin receptor kinases: phylogeny, classification, and expression profiles. J Exp Bot 60:4383–4396

    Article  CAS  PubMed  Google Scholar 

  • Cambi A, Koopman M, Figdor CG (2005) How C-type lectins detect pathogens. Cell Microbiol 7:481–488

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Chao G, Singh KB (1996) The promoter of an H2O2-inducible, Arabidopsis glutathione S-transferase gene contains closely linked OBF- and OBP-binding sites. Plant J 10:955–966

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Shang J, Chen D, Lei C, Zou Y, Zhai W, Liu G, Xu J, Ling Z, Cao G, Ma B, Wang Y, Zhao X, Li S, Zhu L (2006) A B-lectin receptor kinase gene conferring rice blast resistance. Plant J 46:794–804

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Deng KQ, Wang QM, Zeng JX, Guo XH, Zhao XY, Tang DY, Liu XM (2009) A lectin receptor kinase positively regulates ABA response during seed germination and is involved in salt and osmotic stress response. J Plant Biol 52:493–500

    Article  CAS  Google Scholar 

  • Feng ZJ, He GH, Zheng WJ, Lu PP, Chen M, Gong YM, Ma YZ, Xu ZS (2015) Foxtail millet NF-Y families: genome-wide survey and evolution analyses identified two functional genes important in abiotic stresses. Front Plant Sci 6:1142

    PubMed  PubMed Central  Google Scholar 

  • Guo XF, Yan HY (2005) Dof protein and Dof transcription factor family in plants. Plant Physiol Commun 41:419–423

    CAS  Google Scholar 

  • Guo AY, Zhu QH, Chen X, Luo JC (2007) GSDS: a gene structure display server. Yi Chuan 29:1023–1026

    Article  CAS  PubMed  Google Scholar 

  • Guo JY, Zheng XY, Zou CX, Li QL (2011) Research progress of cis-elements of abiotic stress inducible promoters and associated transcription factors. Biotechnol Bull 4:16–20

    Google Scholar 

  • Huang P, Ju HW, Min JH, Zhang X, Kim SH, Yang KY, Kim CS (2013) Overexpression of L-type lectin-like protein kinase 1 confers pathogen resistance and regulates salinity response in Arabidopsis thaliana. Plant Sci 203–204:98–106

    Article  PubMed  Google Scholar 

  • Joshi A, Hung DQ, Vaid N, Tuteja N (2010) Pea lectin receptor-like kinase promotes high salinity stress tolerance in bacteria and expresses in response to stress in planta. Glycoconj J 27:133–150

    Article  CAS  PubMed  Google Scholar 

  • Kanzaki H, Saitoh H, Takahashi Y, Berberich T, Ito A, Kamoun S, Terauchi R (2008) NbLRK1, A lectin-like receptor kinase protein of Nicotiana benthamiana, interacts with Phytophthora infestans INF1 elicitin and mediates INF1-induced cell death. Planta 228:977–987

    Article  CAS  PubMed  Google Scholar 

  • Kelley LA, Sternberg MJ (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4:363–371

    Article  CAS  PubMed  Google Scholar 

  • Klüsener B, Young JJ, Murata Y, Allen GJ, Mori IC, Hugouvieux V, Schroeder JI (2002) Convergence of calcium signaling pathways of pathogenic elicitors and abscisic acid in Arabidopsis guard cells. Plant Physiol 130:2152–2163

    Article  PubMed  PubMed Central  Google Scholar 

  • Lata C, Mishra AK, Muthamilarasan M, Bonthala VS, Khan Y, Prasad M (2014) Genome-wide investigation and expression profiling of AP2/ERF transcription factor superfamily in foxtail millet (Setaria italica L.). PLoS One 9:e113092

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee TH, Tang H, Wang X, Paterson AH (2012) PGDD: a database of gene and genome duplication in plants. Nucleic Acids Res 41:D1152–D1158

    Article  PubMed  PubMed Central  Google Scholar 

  • Loris R (2002) Principles of structures of animal and plant lectins. Biochim Biophys Acta 1572:198–208

    Article  CAS  PubMed  Google Scholar 

  • Naithani S, Chookajorn T, Ripoll DR, Nasrallah JB (2007) Structural modules for receptor dimerization in the S-locus receptor kinase extracellular domain. Proc Natl Acad Sci USA 104:12211–12216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro-Gochicoa MT, Camut S, Timmers AC, Niebel A, Herve C, Boutet E, Bono JJ, Imberty A, Cullimore JV (2003) Characterization of four lectin-like receptor kinases expressed in roots of medicago truncatula. Structure, location, regulation of expression, and potential role in the symbiosis with Sinorhizobium meliloti. Plant Physiol 133:1893–1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishiguchi NM, Yoshida YK, Sumizono ST, Tazaki TK (2002) A receptor-like protein kinase with a lectin-like domain from lombardy poplar: gene expression in response to wounding and characterization of phosphorylation activity. Mol Gen Genom 267:506–514

    Article  CAS  Google Scholar 

  • Pang T, Chu YY, Xin LX, Wei LY (2013) De novo, sequencing and transcriptome analysis of the desert shrub, Ammopiptanthus mongolicus, during cold acclimation using Illumina/Solexa. BMC Genom 14:1–15

    Article  Google Scholar 

  • Rocha DI, Monte-Bello CC, Aizza LCB, Dornelas MC (2016) A passion fruit putative ortholog of the SOMATIC EMBRYOGENESIS RECEPTOR KINASE1 gene is expressed throughout the in vitro de novo shoot organogenesis developmental program. Plant Cell, Tissue Organ Cult 125:107–117

    Article  CAS  Google Scholar 

  • Rose AB (2008) Intron-mediated regulation of gene expression. Curr Top Microbiol Immunol 326:277–290

    CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Shiu SH, Bleecker AB (2001) Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA 98:10763–10768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiu SH, Bleecker AB (2003) Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol 132:530–543

    Article  CAS  PubMed  Google Scholar 

  • Sun XL, Yu QY, Tang LL, Ji W, Bai X, Cai H, Liu XF, Ding XD, Zhu XY (2013) GsSRK, a G-type lectin S-receptor-like serine/threonine protein kinase, is a positive regulator of plant tolerance to salt stress. J Plant Physiol 170:505–515

    Article  CAS  PubMed  Google Scholar 

  • Talapatra S, Ghoshal N, Raychaudhuri SS (2014) Molecular characterization, modeling and expression analysis of a somatic embryogenesis receptor kinase (SERK) gene in Momordica charantia L. during somatic embryogenesis. Plant Cell, Tissue Organ Cult 116:271–283

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor I, Wang Y, Seitz K, Baer J, Bennewitz S, Mooney BP, Walker JC (2016) Analysis of phosphorylation of the receptor-like protein kinase HAESA during Arabidopsis floral abscission. PLoS One 11:180–190

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian Y, Lu XY, Peng LS, Fang J (2006) The structure and function of plant WRKY transcription factors. Hereditas 28:1607–1612

    Article  CAS  PubMed  Google Scholar 

  • Tordai H, Banyai L, Patthy L (1999) The PAN module: the N-terminal domains of plasminogen and hepatocyte growth factor are homologous with the apple domains of the prekallikrein family and with a novel domain found in numerous nematode proteins. FEBS Lett 461:63–67

    Article  CAS  PubMed  Google Scholar 

  • Vaid N, Pandey PK, Tuteja N (2012) Genome-wide analysis of lectin receptor-like kinase family from Arabidopsis and rice. Plant Mol Biol 80:365–388

    Article  CAS  PubMed  Google Scholar 

  • Vaid N, Macovei A, Tuteja N (2013) Knights in action: lectin receptor-like kinases in plant development and stress responses. Mol Plant 6:1405–1418

    Article  CAS  PubMed  Google Scholar 

  • Vaid N, Pandey P, Srivastava VK, Tuteja N (2015) Pea lectin receptor-like kinase functions in salinity adaptation without yield penalty, by alleviating osmotic and ionic stresses and upregulating stress-responsive genes. Plant Mol Biol 88:193–206

    Article  CAS  PubMed  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wan J, Patel A, Mathieu M, Kim SY, Xu D, Stacey G (2008) A lectin receptor-like kinase is required for pollen development in Arabidopsis. Plant Mol Biol 67:469–482

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Zhang SQ (2012) The rice wall-associated receptor-like kinase gene OsDEES1 plays a role in female gametophyte development. Plant Physiol 160:696–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Yuan CY, Chang HP, Lu XT, Wang RR, Guo XH (2013) Plant lectin receptor like kinase gene family: structure and classification, signaling transduction, physiological function. Int J Med Sci Biotechnol 1:24–38

    Google Scholar 

  • Washio K (2001) Identification of Dof proteins with implication in the gibberellin-regulated expression of a peptidase gene following the germination of rice grains. Biochim Biophys Acta 1520:54–62

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Chen W, Foley RC (1995) Interaction between distinct types of DNA binding proteins enhance binding to ocs element promoter sequences. Plant Cell 7:2241–2252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang GJ, Guo WG, Hu XD, Zhang Y, Li QY, Li RQ, Zhuang RH, Lu ZK, He ZQ, Fang XD, Li C, Tian W, Tao Y, Karsten K, Zhang XQ, Li SG, Yang HM, Wang J, Wang J (2010) Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome. Genome Res 20:646–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Liu X, Quan Z, Cheng S, Xu X, Pan S, Xie M, Zeng P, Yue Z, Wang W, Tao Y, Bian C, Han C, Xia Q, Peng X, Cao R, Yang X, Zhan D, Hu J, Zhang Y, Li H, Li H, Li N, Wang J, Wang C, Wang R, Guo T, Cai Y, Liu C, Xiang H, Shi Q, Huang P, Chen Q, Li Y, Wang J, Zhao Z, Wang J (2012) Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol 30:549–554

    Article  CAS  PubMed  Google Scholar 

  • Zu QL, Yin LJ, Xu ZS, Chen M, Zhou YB, Li LC, Ma YZ, Min Zhang XH (2015) Molecular characteristics and functional identification of foxtail millet transcription factor WRKY36. Scientia Agricultura Sinica 48:851–860

    CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Transgenic Key Project of the Ministry of Agriculture of China (2014ZX08002-003B) and the Science and Technology co-ordinating innovative engineering projects of Shaanxi province (2014KTZB02-01-01). We are grateful to Dr. Xianmin Diao of the Institute of Crop Science, Chinese Academy of Agricultural Sciences, for kindly providing the foxtail millet seeds.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Hong Zhang or Dong-Hong Min.

Additional information

Wan Zhao and Yong-Wei Liu are co-first authors and have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Liu, YW., Zhou, JM. et al. Genome-wide analysis of the lectin receptor-like kinase family in foxtail millet (Setaria italica L.). Plant Cell Tiss Organ Cult 127, 335–346 (2016). https://doi.org/10.1007/s11240-016-1053-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-016-1053-y

Keywords

Navigation