Skip to main content
Log in

Callus cultures of Hypericum perforatum L. a novel and efficient source for xanthone production

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Hypericum perforatum callus cultures exhibited qualitatively and quantitatively different phenolic profile compared to wild-growing plants (WGP). This study revealed the presence of phenolic acids, flavonoid glycosides and aglycones, flavan-3-ols and naphtodianthrones in callus and WGP extracts. Phloroglucinols were detected only in WGP, while xanthones were exclusively found in callus cultures. Among the caffeoyl-, coumaroyl- and feruloyl-quinic acid derivatives identified in both extracts, 3-feruloylquinic acid was identified only in callus cultures. Flavonoid glycosides were represented with quercetin and kaempferol derivatives in both extracts, whereas calli produced a new flavone of luteolin type. Callus cultures showed superior potential for the production of quercetin 6-C-glucoside, hyperoside and kaempferol 3-O-glucoside compared to WGP. Flavonoid aglycones, quercetin and kaempferol were found in both extracts, while I3,II8-biapigenin was accumulated only in WGP. Catechin and procyanidin dimers were abundant in WGP, while epicatechin was dominant flavan-3-ol in callus cultures. With respect to naphtodianthrones, undifferentiated calli were able to produce only pseudohypericin, but in minor amounts compared to WGP. Among the eighteen detected xanthones, mangiferin, mangiferin C-prenyl hexoside and 1,3,6,7-tetrahydroxyxanthone were found as the major compounds in callus cultures. Four xanthones identified as roeperanone, 1,3,7-trihydroxy-2-(2-hydroxy-3-methyl-3-butenyl)-xanthone, trihydroxy-1-methoxy C-prenyl xanthone and 1,5-dihydroxy-2-methoxyxanthone were shown for the first time in H. perforatum callus extracts. Altogether, these results indicated that H. perforatum callus cultures represent a promising experimental system for the production of novel xanthone derivatives and other bioactive metabolites of commercial importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bertoli A, Giovannini A, Ruffoni B, Guardo AD, Spinelli G, Mazzetti M, Pistelli L (2008) Bioactive constituent production in St. John’s Wort in vitro hairy roots. Regenerated plant lines. J Agric Food Chem 56:5078–5082

    Article  CAS  PubMed  Google Scholar 

  • Charchoglyan A, Abrahamyan A, Fujii I, Boubakir Z, Gulder TA, Kutchan TM, Vardapetyan H, Bringmann G, Ebizuka Y, Beerhues L (2007) Differential accumulation of hyperforin and secohyperforin in Hypericum perforatum tissue cultures. Phytochemistry 68:2670–2677

    Article  CAS  PubMed  Google Scholar 

  • Conceiçao LF, Ferreres F, Tavares RM, Dias AC (2006) Induction of phenolic compounds in Hypericum perforatum L. cells by Colletotrichum gloeosporioides elicitation. Phytochemistry 67:149–155

    Article  PubMed  Google Scholar 

  • Cui XH, Chakrabarty D, Lee EJ, Paek KY (2010) Production of adventitious roots and secondary metabolites by Hypericum perforatum L. in a bioreactor. Bioresour Technol 101:4708–4716

    Article  CAS  PubMed  Google Scholar 

  • Dias AC, Tomás-Barberán FA, Fernandes-Ferreira M, Ferreres F (1998) Unusual flavonoids produced by callus of Hypericum perforatum. Phytochemistry 48:1165–1168

    Article  CAS  Google Scholar 

  • Dias ACP, Seabra RM, Andrade PB, Fernandes-Ferreira M (1999) The development and evaluation of an HPLC-DAD method for the analysis of the phenolic fractions from in vivo and in vitro biomass of Hypericum species. J Liq Chromatogr Relat Technol 22:215–227

    Article  CAS  Google Scholar 

  • Dias ACP, Seabra RM, Andrade PB, Ferreres F, Fernandes-Ferreira M (2000) Xanthone biosynthesis and accumulation in calli and suspended cells of Hypericum androsaemum. Plant Sci 150:93–101

    Article  CAS  Google Scholar 

  • Dias AC, Seabra RM, Andrade PB, Ferreres F, Ferreira MF (2001) Xanthone production in calli and suspended cells of Hypericum perforatum. J Plant Physiol 158:821–827

    Article  CAS  Google Scholar 

  • El-Seedi HR, El-Barbary MA, El-Ghorab DMH, Bohlin L, Borg-Karlson AK, Goransson U, Verpoorte R (2010) Recent insights into the biosynthesis and biological activities of natural xanthones. Curr Med Chem 17:854–901

    Article  CAS  PubMed  Google Scholar 

  • Ferrari F, Pasqua G, Monacelli B, Cimino P, Botta B (2005) Xanthones from calli of Hypericum perforatum subsp. perforatum. Nat Prod Res 19:171–176

    Article  CAS  PubMed  Google Scholar 

  • Fotie J, Bohle DS (2006) Pharmacological and biological activities of xanthones. Anti Infect Agents Med Chem 5:15–31

    Article  CAS  Google Scholar 

  • Franklin G, Conceição LF, Kombrink E, Dias AC (2009) Xanthone biosynthesis in Hypericum perforatum cells provides antioxidant and antimicrobial protection upon biotic stress. Phytochemistry 70:60–68

    Article  CAS  PubMed  Google Scholar 

  • Gadzovska S, Maury S, Ounnar S, Righezza M, Kascakova S, Refregiers M, Spasenoski M, Joseph C, Hagège D (2005) Identification and quantification of hypericin and pseudohypericin in different Hypericum perforatum L. in vitro cultures. Plant Physiol Biochem 43:591–601

    Article  CAS  PubMed  Google Scholar 

  • Gadzovska S, Maury S, Delaunay A, Spasenoski M, Hagège D, Courtois D, Joseph C (2013) The influence of salicylic acid elicitation of shoots, callus, and cell suspension cultures on production of naphtodianthrones and phenylpropanoids in Hypericum perforatum L. Plant Cell Tissue Org 113:25–39

    Article  CAS  Google Scholar 

  • Gamborg OL, Miller R, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Jürgenliemk G, Nahrstedt A (2002) Phenolic compounds from Hypericum perforatum. Planta Med 68:88–91

    Article  PubMed  Google Scholar 

  • Karppinen K, Hokkanen J, Tolonen A, Mattila S, Hohtola A (2007) Biosynthesis of hyperforin and adhyperforin from amino acid precursors in shoot cultures of Hypericum perforatum. Phytochemistry 68:1038–1045

    Article  CAS  PubMed  Google Scholar 

  • Kirakosyan AB, Vardapetyan RR, Charchoglyan AG (2000) The content of hypericin and pseudohypericin in cell cultures of Hypericum perforatum. Russ J Plant Physiol 47:270–273

    CAS  Google Scholar 

  • Kirakosyan A, Sirvent TM, Gibson DM, Kaufman PB (2004) The production of hypericins and hyperforin by in vitro cultures of St. John’s wort (Hypericum perforatum). Biotechnol Appl Biochem 39:71–81

    Article  CAS  PubMed  Google Scholar 

  • Kitanov GM, Nedialkov PT (1998) Mangiferin and isomangiferin in some Hypericum species. Biochem Syst Ecol 26:647–653

    Article  CAS  Google Scholar 

  • Kwiecień I, Szydłowska A, Kawka B, Beerhues L, Ekiert H (2015) Accumulation of biologically active phenolic acids in agitated shoot cultures of three Hypericum perforatum cultivars: ‘Elixir’, ‘Helos’ and ‘Topas’. Plant Cell Tissue Org 123:273–281

    Article  Google Scholar 

  • Liu XN, Zhang XQ, Sun JS (2007) Effects of cytokinins and elicitors on the production of hypericins and hyperforin metabolites in Hypericum sampsonii and Hypericum perforatum. Plant Growth Regul 53:207–214

    Article  CAS  Google Scholar 

  • Mccoy JA, Camper ND (2002) Development of a micropropagation protocol for St. John’s Wort (Hypericum Perforatum L.). HortSci 37:978–980

    CAS  Google Scholar 

  • Mulinacci N, Giaccherini C, Santamaria AR, Caniato R, Ferrari F, Valletta A, Vincieri FF, Pasqua G (2008) Anthocyanins and xanthones in the calli and regenerated shoots of Hypericum perforatum var. angustifolium (sin. Fröhlich) Borkh. Plant Physiol Biochem 46:414–420

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murch SJ, Saxena PK (2006) St. John’s wort (Hypericum perforatum L.): challenges and strategies for production of chemically consistent plants. Can J Plant Sci 86:765–771

    Article  CAS  Google Scholar 

  • Nahrstedt A, Butterweck V (2010) Lessons learned from herbal medicinal products: the example of St. John’s Wort. J Nat Prod 73:1015–1102

    Article  CAS  PubMed  Google Scholar 

  • Nichols M, Zhang J, Polster BM, Elustondo PA, Thirumaran A, Pavlov EV, Robertson GS (2015) Synergistic neuroprotection by epicatechin and quercetin: activation of convergent mitochondrial signaling pathways. Neuroscience 308:75–94

    Article  CAS  PubMed  Google Scholar 

  • Pasqua G, Avato P, Monacelli B, Santamaria AR, Argentieri MP (2003) Metabolites in cell suspension cultures, calli, and in vitro regenerated organs of Hypericum perforatum cv. Topas. Plant Sci 165:977–982

    Article  CAS  Google Scholar 

  • Santarém ER, Astarita LV (2003) Multiple shoot formation in Hypericum perforatum L. and hypericin production. Braz J Plant Physiol 15:43–47

    Article  Google Scholar 

  • Soelberg J, Jørgensen LB, Jäger AK (2007) Hyperforin accumulates in the translucent glands of Hypericum perforatum. Ann Bot 99:1097–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solomon D, Adams J, Graves N (2013) Economic evaluation of St. John’s wort (Hypericum perforatum) for the treatment of mild to moderate depression. J Affect Disord 148:228–234

    Article  PubMed  Google Scholar 

  • Tocci N, Ferrari F, Santamaria AR, Valletta A, Rovardi I, Pasqua G (2010) Chitosan enhances xanthone production in Hypericum perforatum subsp. angustifolium cell cultures. Nat Prod Res 24:286–293

    Article  CAS  PubMed  Google Scholar 

  • Tocci N, Simonetti G, D’Auria FD, Panella S, Palamara AT, Valletta A, Pasqua G (2011) Root cultures of Hypericum perforatum subsp. angustifolium elicited with chitosan and production of xanthone-rich extracts with antifungal activity. Appl Microbiol Biotechnol 91:977–987

    Article  CAS  PubMed  Google Scholar 

  • Tocci N, Simonetti G, D’Auria FD, Panella S, Palamara AT, Ferrari F, Pasqua G (2013) Chemical composition and antifungal activity of Hypericum perforatum subsp. angustifolium roots from wild plants and plants grown under controlled conditions. Plant Biosyst 147:557–562

    Article  Google Scholar 

  • Tusevski O, Stanoeva J, Stefova M, Kungulovski D, Pancevska N, Sekulovski N, Panov S, Simic SG (2013a) Hairy roots of Hypericum perforatum L.: a promising system for xanthone production. Open Life Sci 8:1010–1022

    CAS  Google Scholar 

  • Tusevski O, Petreska Stanoeva J, Stefova M, Gadzovska Simic S (2013b) Phenolic profile of dark-grown and photoperiod-exposed Hypericum perforatum L. hairy root cultures. Sci World J. doi:10.1155/2013/602752

  • Tusevski O, Stanoeva JP, Stefova M, Simic SG (2014a) Agrobacterium enhances xanthone production in Hypericum perforatum cell suspensions. Plant Growth Regul 76:199–210

    Article  Google Scholar 

  • Tusevski O, Stanoeva JP, Stefova M, Pavokovic D, Simic SG (2014b) Identification and quantification of phenolic compounds in Hypericum perforatum L. transgenic shoots. Acta Physiol Plant 36:2555–2569

    Article  CAS  Google Scholar 

  • Vardapetyan HR, Oganesyan AA, Kabasakalyan EE, Tiratsuyan SG (2006) The influence of some elicitors on growth and morphogenesis of Hypericum perforatum L. callus cultures. Russ J Dev Biol 37:350–353

    Article  CAS  Google Scholar 

  • Yazaki K, Okuda T (1990) Procyanidins in callus and multiple shoot cultures of Hypericum erectum. Planta Med 56:490–491

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Liu C, Yu M, Zhang Z, Qi Y, Wang J, Wu G, Li S, Yu J, Hu Y (2011) Application of accelerated solvent extraction coupled with high-performance counter-current chromatography to extraction and online isolation of chemical constituents from Hypericum perforatum L. J Chromatogr A 1218:2827–2834

    Article  CAS  PubMed  Google Scholar 

  • Zubrická D, Mišianiková A, Henzelyová J, Valletta A, De Angelis G, D’Auria FD, Simonetti G, Pasqua G, Čellárová E (2015) Xanthones from roots, hairy roots and cell suspension cultures of selected Hypericum species and their antifungal activity against Candida albicans. Plant Cell Rep 34:1953–1962

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja Gadzovska Simic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tusevski, O., Stanoeva, J.P., Markoska, E. et al. Callus cultures of Hypericum perforatum L. a novel and efficient source for xanthone production. Plant Cell Tiss Organ Cult 125, 309–319 (2016). https://doi.org/10.1007/s11240-016-0951-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-016-0951-3

Keywords

Navigation