Skip to main content
Log in

Acidogenic growth model of embryogenic cell suspension culture and qualitative mass production of somatic embryos from triploid bananas

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

A young male flower-derived embryogenic suspension cell population of AAA ‘Pei Chiao’, ‘Dwarf Cavendish’, and AAB ‘Raja’ was used for developing an acidogenic growth model . We hypothesized that a close relationship exists between the self-regulated pH medium and the corresponding changes in the growth phases. Studies have reported that a pH below 4.6 may prevent the embryogenic cells from undergoing polar growth. Controlling pH up to a level 4.6 within 2 days during the changes of pre-embryogenic cells (PECs) and proembryogenic masses into embryogenic determined cells (EDCs) uniformly resulted in unequal cell division. The hydrogen ion buffer 2-N-morpholino-ethanesulfonic acid at 10 g L−1 was added to MA2 and MA3 media, showing the medium pH of MA3 up to 5.0, thus maintaining a relatively stable pH in AAA ‘Pei-Chiao’ and AAB ‘Raja’ cells that autoregulate acidification, significantly increasing the number of somatic embryos. When the proliferation and globularization phases were acidified to pH 3.5 ± 0.2, cells were released to free single cells of PECs and EDCs after 21 days. This study provides possible explanation that PECs deposit callose on their cell walls as a possible protector from strong acidic condition. Regulation at pH 5.0 ± 0.2 resulted the production efficiency achieved was 0.9 million somatic embryos per 1 mL of the settled cell volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PEMs:

Proembryogenic masses

PECs:

Pre-embryogenic cells

EDCs:

Embryogenic determined cells

MES:

2-N-morpholino-ethanesulfonic acid

SCV:

Settled cell volume

2,4-D:

2,4-Dichlorophenoxyacetic acid

2iP:

Isopentenyladenosine

IAA:

Indole-3-acetic acid

NAA:

Naphthaleneacetic acid

References

  • Chawla HS (2002) Introduction to plant biotechnology 2nd. Science Publishers, Inc, USA. ISBN 1-57808-228-5

    Google Scholar 

  • Chin WYW, Annuar MSM, Tan BC, Khalid N (2014) Evaluation of a laboratory scale conventional shake flask and a bioreactor on cell growth and regeneration of banana cell suspension cultures. Sci Hortc 172:39–46

    Article  CAS  Google Scholar 

  • Choi YE, Yang DC, Kim HS, Choi KT (1997) Distribution and changes of reserve materials in cotyledon cells of Panax ginseng related to direct somatic embryogenesis and germination. Plant Cell Rep 16:841–846

    Article  CAS  Google Scholar 

  • Chung JP, Chang TL, Chi YM, Shii CT (2006) Triploid banana cell growth phases and the correlation of medium pH changes with somatic embryogenesis in embryogenic cell suspension culture. Plant Cell Tiss Org Cult 87:305–314

    Article  Google Scholar 

  • Cosgrove DJ (1996) Plant cell enlargement and the action of expansins. BioEssays 18:533–540

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (1997) Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargement. Plant Cell 9:1031–1041

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Klerk GJ, Hanecakova J, Jaśik J (2008) Effect of medium-pH and MES on adventitious root formation from stem disks of apple. Plant Cell Tiss Organ Cult 95:285–292

    Article  Google Scholar 

  • EISayed AI, Weig AR, Sariyeva G, Hummel E, Yan SL, Bertolini A, Komor E (2013) Assimilate export inhibition in Sugarcane yellow leaf virus-infected sugarcane is not due to less transcripts for sucrose transporters and sucrose-phosphate synthase or to callose deposition in sieve plates. Physiol Mol Plant Path 81:64–73

    Article  Google Scholar 

  • Escobedo-GraciaMedrano RM, Maldonado-Borges JI, Burgos-Tan MJ, Valadez-González N, Ku-Cauich JR (2014) Using flow cytometry and cytological analyses to assess the genetic stability of somatic embryo-derived plantlets from embryogenic Musa acuminata Colla (AA) ssp. malaccensis cell suspension cultures. Plant Cell Tiss Org Cult 116:175–185

    Article  CAS  Google Scholar 

  • Evans AD, Sharp WR (1986) Applications of somaclonal variation. Biotechnol 4:528–532

    Article  Google Scholar 

  • Grimault V, Helleboid S, Vasseur J, Hilbert JL (2007) Co-localization of β-1,3-glucanases and callose during somatic embryogenesis in Cichorium. Plant Signal Behav 2:455–461

    Article  PubMed Central  PubMed  Google Scholar 

  • Helleboid S, Chapman A, Hendriks T, Inzé D, Vasseur J, Hilbert JL (2000) Cloning of β-1,3-glucanases expressed during Cichorium somatic embryogenesis. Plant Mol Biol 42:377–386

    Article  CAS  PubMed  Google Scholar 

  • Husin N, Jalil M, Othman RY, Khalid N (2014) Enhancement of regeneration efficiency in banana (Musa acuminata cv. Berangan) by using proline and glutamine. Sci Hortc 168:33–37

    Article  CAS  Google Scholar 

  • Jafari N, Othman RY, Tan BC, Khalid N (2015) Morphohistological and molecular profiles during the developmental stages of somatic embryogenesis of Musa acuminata cv. Berangan (AAA). Acta Physiol Plant 37:12p. doi:10.1007/s11738-015-1796-9

    Article  Google Scholar 

  • Krikorian AD (1996) Strategies for “Minimal growth maintenance” of cell cultures: a perspective on management for extended duration experimentation in the microgravity environment of a space station. Bot Rev 62:41–108

    Article  CAS  PubMed  Google Scholar 

  • Kropf DL (1997) Induction of polarity in Fucus zygotes. Plant Cell 9:1011–1020

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kulkarni VM, Bapat VA (2013) Somatic embryogenesis and plant regeneration from cell suspension cultures of Rajeli (AAB), an endangered banana cultivar. J Plant Biochem Biotech 22:132–137

    Article  CAS  Google Scholar 

  • Leljak-Levanić D, Bauer N, Mihaljević S, Jelaska S (2004) Somatic embryogenesis in pumpkin (Cucurbita pepo L.): control of somatic embryo development by nitrogen compounds. J Plant Physiol 161:229–236

    Article  PubMed  Google Scholar 

  • Liu R, Wang L, Zhu J, Chen T, Wang Y, Xu Y (2015) Histological responses to downy mildew in resistant and susceptible grapevines. Proplasma 252:259–270

    CAS  Google Scholar 

  • Ma SS, Shii CT, Huang PL, Liauh YW (1985) Tissue culture propagation of banana. R.O.C.-Japan Symposium on the Agricultural Development. NTU, Taipei Taiwan, pp 18–21

    Google Scholar 

  • Mihaljević S, Radić S, Bauer N, Garić R, Mihaljević B, Horvat G, Leljak-Levanić D, Jelaska S (2011) Ammonium-related metabolic changes affect somatic embryogenesis in pumpkin (Cucurbita pepo L.). J Plant Physiol 168:1943–1951

    Article  PubMed  Google Scholar 

  • Mohandas S, Sowmya HD, Meenakshi S (2013) Somatic embryogenesis and plant regeneration through cell suspension in diploid (AB) banana cultivar Elakki Bale (syn Neypoovan). J Plant Biochem Biotech 22:245–249

    Article  Google Scholar 

  • Murashige T, Skoog T (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Osuga K, Komamine A (1994) Synchronization of somatic embryogenesis from carrot cells at high frequency as a basis for the mass production of embryos. Plant Cell Tiss Org Cult 39:125–135

    Article  CAS  Google Scholar 

  • Pullman GS, Johnson S, Van Tassel S, Zhang Y (2005) Somatic embryogenesis in loblolly pine (Pinus taeda) and Douglas fir (Pseudotsuga menziesii): improving culture initiation and growth with MES pH buffer, biotin, and folic acid. Plant Cell Tiss Org Cult 80:91–103

    Article  CAS  Google Scholar 

  • Renzaglia KS, Lopez RA, Johnson EE (2015) Callose is integral to the development of permanent tetrads in the liverwort Sphaerocarpos. Planta 241:615–627

    Article  CAS  PubMed  Google Scholar 

  • Sampedro J, Cosgrove DJ (2005) The expansin superfamily. Genome Biol 6:242

    Article  PubMed Central  PubMed  Google Scholar 

  • Schenk RU, Hildebrandt AC (1971) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204

    Article  Google Scholar 

  • Shii CT, Ma SS, Huang IC, Ching WH (1992) Somatic embryogenesis and plantlet regeneration in suspension cell cultures of triploid banana (Musa AAA) subgroup Cavendish. Intl. Sym. Recent Develop Banana Cult. Tech. Abs. TBRI, Pingtung Taiwan, pp 21–22

    Google Scholar 

  • Smith DL, Krikorian AD (1990) Low external pH replaces 2,4-D in maintaining and multiplying 2,4-D-initiated embryogenic cells of carrot. Physiol Plant 80:329–336

    Article  CAS  PubMed  Google Scholar 

  • Vroemen C, de Vries S, Quatrano R (1999) Signalling in plant embryos during the establishment of the polar axis. Cell Dev Biol 10:157–164

    Article  CAS  Google Scholar 

  • Wang X, Shi L, Lin G, Pan X, Chen H, Wu X, Takáč T, Šamaj J, Xu C (2013) A systematic comparison of embryogenic and non-embryogenic cells of banana (Musa spp. AAA): ultrastructural, biochemical and cell wall component analyses. Sci Hortc 159:178–185

    Article  CAS  Google Scholar 

  • Wiebke-Strohm B, Homrich MS, Weber RLW, Droste A, Bodanese-Zanettini MH (2012) Strategies for improvement of soybean regeneration via somatic embryogenesis and genetic transformation. In: Barrera-Saldaña HA (ed) Genetic engineering—basics, new applications and responsibilities, InTech Europe ISBN: 978-953-307-790-1

  • Xu J, Hofhuis H, Heidstra R, Sauer M, Friml J, Scheres B (2006) A molecular framework for plant regeneration. Science 311:385–388

    Article  CAS  PubMed  Google Scholar 

  • You XL, Yi JS, Choi YE (2006) Cellular change and callose accumulation in zygotic embryos of Eleutherococcus senticosus caused by plasmolyzing pretreatment result in high frequency of single-cell-derived somatic embryogenesis. Protoplasma 227:105–112

    Article  Google Scholar 

  • Yuan SX, Su YB, Liu YM, Fang ZY, Yang LM, Zhuang M, Zhang YY, Sun PT (2012) Effect of pH, MES, arabinogalactan-proteins on microspore cultures in white cabbage. Plant Cell Tiss Organ Cult 110:69–76

    Article  CAS  Google Scholar 

  • Zhang Z, Laux T (2011) The asymmetric division of the Arabidopsis zygote: from cell polarity to an embryo axis. Sex Plant Reprod 24:161–169

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chou Tou Shii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, JP., Lu, CC., Kuo, LT. et al. Acidogenic growth model of embryogenic cell suspension culture and qualitative mass production of somatic embryos from triploid bananas. Plant Cell Tiss Organ Cult 124, 241–251 (2016). https://doi.org/10.1007/s11240-015-0888-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0888-y

Keywords

Navigation