Skip to main content
Log in

Responses of grass pea seedlings to salinity stress in in vitro culture conditions

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Physiological and molecular mechanisms of adaptation to abiotic stresses of grass pea (Lathyrus sativus L.) are still poorly understood. Responses of four genotypes of grass pea to salinity stress in tissue culture conditions were investigated at early seedling growth stages. Salinity stress was induced in the agar media by adding 0, 50, 100 and 200 mM of NaCl. Germination and seedling emergence percentage was not significantly affected by 50 and 100 mM of NaCl. However, NaCl in 200 mM concentration lowered level of these parameters. Generally, exposure to NaCl stress significantly reduced length of grass pea seedling organs (root and shoot) but did not influence the content of dry weight in shoots and increased it in the roots in two cases. Increasing salt concentration decreased integrity of cellular membranes both in root and shoot tissues. Higher accumulation of phenolic compounds and significant changes in activity of antioxidant enzymes (peroxidase and catalase) were observed in the roots but not in the shoots. Similarly, the content of proline increased mostly in the roots from moderate (100 mM) salinity conditions. Adverse conditions did not resulted in alterations in photosynthetic pigments content of any tested genotypes. The better performance of shoots than roots may result from in vitro conditions in which experiments were conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad P, John R, Sarwat M, Umar S (2008) Responses of proline, lipid peroxidation and ntioxidative enzymes in two varieties of Pisum sativum L. under salt stress. Int J Plant Prod 2(4):353–365

    CAS  Google Scholar 

  • Al-Mutawa MM (2003) Effect of salinity on germination and seedling growth of chickpea (Cicer arietinum L.) genotypes. Int J Agric Biol 3:226–229

    Google Scholar 

  • Amirjani MR (2010) Effect of salinity stress on growth, mineral composition, proline content, antioxidant enzymes of soybean. Am J Plant Physiol 5(6):350–360

    Article  CAS  Google Scholar 

  • Arora A, Byrem TM, Nair MG, Strasburg GM (2000) Modulation of liposomal membrane fluidity by flavonoids and isoflavonoids. Arch Biochem Biophys 373(1):102–109

    Article  CAS  PubMed  Google Scholar 

  • Arulbalachandran D, Sankar Ganesh K, Subramani A (2009) Changes in metabolites and antioxidant enzyme activity of three Vigna species induced by NaCl stress. Am Eurasian J Agron 2(2):109–116

    Google Scholar 

  • Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora 199:361–376

    Article  Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Ali Q (2008) Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environ Exp Bot 63:266–273

    Article  CAS  Google Scholar 

  • Ashraf M, Bashir A (2003) Salt stress induced changes in some organic metabolites and ionic relations in nodules and other plant parts of two crop legumes differing in salt tolerance. Flora 198:486–498

    Article  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    Article  CAS  Google Scholar 

  • Ashraf M, Iram A (2005) Drought stress induced changes in some organic substances in nodules and other plant parts of two potential legumes differing in salt tolerance. Flora 200:535–546

    Article  Google Scholar 

  • Bandeoğlu E, Eyidoğan F, Yűcel M, Őktem HA (2004) Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress. Plant Growth Regul 42:69–77

    Article  Google Scholar 

  • Barpete S, Khawar KM, Ozcan S (2014) Differential competence for in vitro adventitious rooting of grass pea (Lathyrus sativus L.). Plant Cell, Tissue Organ Cult 119:39–50

    Article  CAS  Google Scholar 

  • Bartosz G (2006) Another side of oxygen. Free radicals in nature. Wydawnictwo Naukowe PWN, Warsaw (in Polish)

    Google Scholar 

  • Bates LS, Waldern RP, Teare ID (1973) Rapid determination of free proline from water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bonilla I, El-Hamdaoui A, Bolaños L (2004) Boron and calcium increase Pisum sativum seed germination and seedling development under salt stress. Plant Soil 267:97–107

    Article  CAS  Google Scholar 

  • Campbell CG (1997) Grass pea. Lathyrus sativus L. Promoting the conservation and use of underutilized and neglected crops. 18. Institute of Plant Genetics and Crop Plant Research. Gatersleben International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Campbell CG, Mehra RB, Agrawal SK, Chen YZ, Abd El Moneim AM, Khawaja HIT, Yadov CR, Tay JU, Araya WA (1994) Current status and future strategy in breeding grasspea (Lathyrus sativus). Euphytica 73:167–175

    Article  Google Scholar 

  • Chattopadhyay A, Subba P, Pandey A, Bhushan D, Kumar R, Datta A, Chakraborty S, Chakraborty N (2011) Analysis of the grasspea proteome and identification of stress responsive proteins upon exposure to high salinity, low temperature, and abscisic acid treatment. Phytochemistry 72:1293–1307

    Article  CAS  PubMed  Google Scholar 

  • Close DC, McArthur C (2002) Rethinking the role of many plant phenolics—protection from photodamage not herbivores? Oikos 99:166–172

    Article  CAS  Google Scholar 

  • D’Souza MR, Devaraj VR (2010) Biochemical responses of Hyacinth bean (Lablab purpureus) to salinity stress. Acta Physiol Plant 32:341–353

    Article  Google Scholar 

  • Dash M, Panda SK (2001) Salt stress induced changes in growth and enzyme activities in germinating Phaseolus mungo seeds. Biol Plant 44(4):587–589

    Article  CAS  Google Scholar 

  • Demir Y, Kocaçalişkan I (2002) Effect of NaCl and proline on bean seedlings cultured in vitro. Biol Plant 45(4):597–599

    Article  CAS  Google Scholar 

  • Demiral T, Türkan I (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 53:247–257

    Article  CAS  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Durieu P, Ochatt SJ (2000) Efficient intergeneric fusion of pea (Pisum sativum L.) and grass pea (Lathyrus sativus L.) protoplasts. J Exp Bot 51:1237–1242

    Article  CAS  PubMed  Google Scholar 

  • Esechie HA, Al-Saidi A, Al-Khanjari S (2002) Effect of sodium chloride salinity on seedling emergence in chickpea. J Agron Crop Sci 188:155–160

    Article  Google Scholar 

  • Garg N, Singla R (2004) Growth, photosynthesis, nodule nitrogen and carbon fixation in the chickpea cultivars under salt stress. Braz J Plant Physiol 16(3):137–146

    Article  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Grace SC, Logan BA (2000) Energy dissipation and radical scavenging by the plant phenylpropanoid pathway. Philos Trans R Soc Lond B 355:1499–1510

    Article  CAS  Google Scholar 

  • Grela ER, Studziński T, Matras J (2001) Antinutritional factors in seeds of Lathyrus sativus cultivated in Poland. Lathyrus Lathyrism Newsl 2:101–104

    Google Scholar 

  • Hasegawa PM, Bressan A, Zhy J-K, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  • Hincha DK, Hageman M (2004) Stabilization of model membranes during drying by compatible solutes involved in the stress tolerance of plants and microorganisms. Biochem J 383:277–283

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hu Y, Schmidhalter U (2002) Limitation of salt stress to plant. In: Hock B, Elstner E (eds) Plant toxicology, 4th edn. Marcel Dekker Inc, New York, pp 191–224

    Google Scholar 

  • Jain M, Mathur G, Koul S, Sarin NB (2001) Ameliorative effects of proline on salt stress induced lipid peroxidation in cell lines of groundnut (Arachis hypogaea L.). Plant Cell Rep 20:463–468

    Article  CAS  Google Scholar 

  • Jiménez-Bremont JF, Becerra-Flora A, Hernández-Lucero E, Rodríguez-Kessler M, Acosta-Gallegos JA, Ramírez-Pimentel JG (2006) Proline accumulation in two bean cultivars under salt stress and the effect of polyamines and ornithine. Biol Plant 50(4):763–766

    Article  Google Scholar 

  • Kavi Kishor PB, Sangam S, Amrutha RN, Sri Laxmi P, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Curr Sci 88(3):424–438

    Google Scholar 

  • Kaya M, Kaya G, Kaya MD, Atak M (2008) Interaction between seed size and NaCl on germination and early seedling growth of some Turkish cultivars of chickpea (Cicer arietinum L.). J Zhejiang Univ Sci B 9(5):371–377

    Article  PubMed Central  PubMed  Google Scholar 

  • Khan MA, Bilquees G (2006) Halophyte seed germination. In: Khan MA, Weber DJ (eds) Ecophysiology of high salinity tolerant plants. Springer, Netherlands, pp 11–30

    Chapter  Google Scholar 

  • Li G, Wan S, Zhou J, Yang Z, Qin P (2010) Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to 596 salt stress levels. Ind Crops Prod 31(1):13–19

    Article  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Method Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Lin CC, Kao CH (1996) Proline accumulation is associated with inhibition of rice seedling root growth caused by NaCl. Plant Sci 114:121–128

    Article  CAS  Google Scholar 

  • Liu J, Zhu JK (1997) Proline accumulation and salt-stress-induced gene expression in a salt hypersensitive mutant of Arabidopsis. Plant Physiol 114(2):591–596

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lück H (1962) Methoden der enzymatischen analyse. Verlag Chemie GmbH, Weinheim

    Google Scholar 

  • Mahdavi B, Sanavy SAMM (2007) Germination and seedling growth in grass pea (Lathyrus sativus) cultivars under salinity conditions. Pak J Biol Sci 10(2):273–279

    Article  CAS  PubMed  Google Scholar 

  • Manchanda G, Garg N (2008) Salinity and its effects on the functional biology of legumes. Acta Physiol Plant 30:595–618

    Article  CAS  Google Scholar 

  • Matysik J, Bhalu AB, Mohanty P (2002) Moleculart mechanisms of quenching of reactive oxygen species by proline under stress plants. Curr Sci 82(5):525–532

    CAS  Google Scholar 

  • Meguekam TL, Taffouo VD, Grigore M-N, Zamfirache MM, Youmbi E, Amougou A (2014) Differential responses of growth, chlorophyll content, lipid peroxidation and accumulation of compatible solutes to salt stress in peanut (Arachis hypogaea L.) cultivars. Afr J Biotechnol 13(50):4577–4585

    Article  Google Scholar 

  • Mer RK, Prajith PK, Pandya DH, Pandey AN (2000) Effect of salts on germination of seeds and growth of young plants of Hordeum vulgare, Triticum aestivum, Cicer arietinum and Brassica juncea. J Agron Crop Sci 185:209–217

    Article  CAS  Google Scholar 

  • Milczak M, Pedzinski M, Mnichowska H, Szwed-Urbas K, Rybiński W (2001) Creative breeding of grasspea (Lathyrus sativus L.) in Poland. Lathyrus Lathyrism Newsl 2:85–88

    Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murillo-Amador B, López-AguilarR Kaya C, Larrinaga-Mayoral J, Flores-Hernández A (2002) Comparative effects of NaCl and polyethylene glycol on germination, emergence and seedling growth of cowpea. J Agron Crop Sci 188:235–247

    Article  CAS  Google Scholar 

  • Noreen Z, Ashraf M (2009) Assessment of variation in antioxidative defense system in salt ntreated pea (Pisum sativum) cultivars and its putative use as salinity tolerance markers. J Plant Physiol 166(16):1764–1774

    Article  CAS  PubMed  Google Scholar 

  • Ochatt S, Durieu P, Jacas L, Pontecaille C (2001) Protoplast, cell and tissue cultures for the biotechnological breeding of grass pea (Lathyrus sativus L.). Lathyrus Lathyrism Newsl 2:35–38

    Google Scholar 

  • Ochatt SJ, Muneaux E, Machado C, Jacas L, Pontecaille C (2002) The hyperhydricity of in vitro regenerants of grass pea (Lathyrus sativus L.) is linked with abnormal DNA content. J Plant Physiol 159:1021–1028

    Article  CAS  Google Scholar 

  • Ochatt SJ, Conreux C, Jacas L (2013) Flow cytometry distinction between species and between landraces within Lathyrus species and assessment of true-to-typeness of in vitro regenerants. Plant Syst Evol 299:75–85

    Article  Google Scholar 

  • Okcu G, Kaya MD, Atak M (2005) Effects of salt and drought stresses on germination and seedling growth of pea (Pisum sativum L.). Turk J Agric For 29:237–242

    Google Scholar 

  • Parida KA, Jha B (2013) Inductive responses of some organic metabolites for osmotic homeostasis in peanut (Arachis hypogaea L.) seedlings during salt stress. Acta Physiol Plant 35:2821–2832

    Article  CAS  Google Scholar 

  • Parida KA, Dagaonkar VS, Phalak MS, Umalkar GV, Aurangabadkar LP (2007) Alterations in photosynthetic pigments, protein and osmotic components in cotton genotypes subjected to short-term drought stress followed by recovery. Plant Biotechnol Rep 1:37–48

    Article  Google Scholar 

  • Parida AK, Dagaonkar VS, Phalak MS, Aurangabadkar LP (2008) Differential responses of the enzymes involved in proline biosynthesis and degradation in drought tolerant and sensitive cotton genotypes during drought stress and recovery. Acta Physiol Plant 30:619–627

    Article  CAS  Google Scholar 

  • Piwowarczyk B, Pindel A (2014) Early stages of somatic embryogenesis in root callus of grasspea (Lathyrus sativus L.). J Cent Eur Agric 15(3):209–218

    Article  Google Scholar 

  • Piwowarczyk B, Pindel A (2015) Determination of an optimal isolation and culture conditions of grass pea protoplasts. Biotechnologia 96(2):192–202

    Article  Google Scholar 

  • Queirós F, Fidalgo F, Santos I, Salema R (2007) In vitro selection of salt tolerant cell lines in Solanum tuberosum L. Biol Plant 51(4):728–734

    Article  Google Scholar 

  • Radi AA, Farghaly FA, Hamada AM (2013) Physiological and biochemical responses of saltn tolerant and salt-sensitive wheat and bean cultivars to salinity. J Biol Earth Sci 3(1):72–88

    Google Scholar 

  • Rai MK, Jaiswal VS, Jaiswal U (2010) Regeneration of plantlets of guava (Psidium guajava L.) from somatic embryos developed under salt-stress condition. Acta Physiol Plant 32:1055–1062

    Article  Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2(4):152–159

    Article  Google Scholar 

  • Rybiński W (2003) Mutagenesis as a tool for improvement of traits in grasspea (Lathyrus sativus L.). Lathyrus Lathyrism Newsl 3:27–31

    Google Scholar 

  • Rybiński W, Błaszczak W, Fornal J (2006) Seed microstructure and genetic variation of characters in selected grass-pea mutants (Lathyrus sativus L.). Int Agrophys 20:317–326

    Google Scholar 

  • Sgherri C, Stevanovic B, Navari-Izzo F (2004) Role of phenolics in the antioxidative status of the resurrection plant Ramonda serbica during dehydration and rehydration. Physiol Plant 122:478–485

    Article  CAS  Google Scholar 

  • Shaddad MA, Radi AF, Abdel-Rahman AM, Azooz MM (1990) Response of seeds of Lupinus termis and Vicia faba to the interactive effect of salinity and ascorbic acid or pyridoxine. Plant Soil 122:177–183

    Article  CAS  Google Scholar 

  • Shahid MA, Balal RM, Pervez MA, Abbas T, Ashfaq M, Afzal M, Rashid A, Garcia-Sanchez F, Mattson NS (2012) Differential response of pea (Pisum sativum L.) genotypes to salt stress in relation to the growth, physiological attributes antioxidant activity and organic solutes. Aust J Crop Sci 6(5):828–838

    CAS  Google Scholar 

  • Singh K (2004) The physiology of salt tolerance in four genotypes of chickpea during germination. J Agric Sci Technol 6:87–93

    Google Scholar 

  • Smulikowska S, Rybiński W, Czerwiński J, Taciak M, Mieczkowska A (2008) Evaluation of selected mutants of grasspea (Lathyrus sativus L.) var. Krab as an ingredient in broiler chicken diet. J Anim Feed Sci 17:75–87

    Google Scholar 

  • Swain T, Hillis WE (1959) Phenolic constituents of Prunus domestica. I. Quantitative analysis of phenolic constituents. J Sci Food Agric 10:63–68

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Talukdar D (2011a) Flower and pod production, abortion, leaf injury, yield and seed neurotoxin levels in stable dwarf mutant lines of grass pea (Lathyrus sativus L.) differing in salt stress responses. Int J Curr Res 2(1):046–054

    Google Scholar 

  • Talukdar D (2011b) Isolation and characterization of NaCl-tolerant mutations in two important legumes, Clitoria ternatea L. and Lathyrus sativus L.: induced mutagenesis and selection by salt stress. J Med Plants Res 5(16):3619–3628

    CAS  Google Scholar 

  • Talukdar D (2011c) Morpho-physiological responses of grass pea (Lathyrus sativus L.) genotypes to salt stress at germination and seedling stages. Legume Res 34(4):232–241

    Google Scholar 

  • Talukdar D (2012) Modulation of plant growth and leaf biochemical parameters in grass pea (Lathyrus sativus L.) and fenurgreek (Trigonella foenum-graecum L.) exposed to NaCl treatments. Indian J Fundam Appl Life 2(3):20–28

    Google Scholar 

  • Talukdar D (2013) Growth responses and leaf antioxidant metabolism of grass pea (Lathyrus sativus L.) genotypes under salinity stress. ISRN Agron 2013:15. http://dx.doi.org/10.1155/2013/284830

  • Telesiński A, Nowak J, Smolik B, Dubowska A, Skrzypiec N (2008) Effect of soli salinity on activity of antioxidant enzymes and kontent of ascorbic acid and phenols in Bean (Phaseolus vulgaris L.) plants. J. Elementol 13(3):401–409

    Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tsegay BA, Gebreslassie B (2014) The effect of salinity (NaCl) on germination and early seedling growth of Lathyrus sativus and Pisum sativum var. abyssinicum. Afr J Plant Sci 8(5):225–231

    Article  Google Scholar 

  • Türkan I, Demiral T (2009) Recent developments in understanding salinity tolerance. Environ Exp Bot 67:2–9

    Article  Google Scholar 

  • Weisany W, Sohrabi Y, Heidari G, Siosemardeh A, Ghassemi-Golezani K (2012) Changes in antioxidant enzymes activity and plant performance by salinity stress and zinc application in soybean (Glycine max L.). Plant Omics J 5(2):60–67

    CAS  Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    Article  CAS  Google Scholar 

  • Wild A (2003) Soils, land and food. Managing the land during the twenty-first century. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Wiszniewska A, Piwowarczyk B (2014) Studies on cell wall regeneration in protoplast culture of legumes—the effect of organic medium additives on cell wall components. Czech J Genet Plant Breed 50(2):84–91

    Google Scholar 

  • Wiszniewska A, Piwowarczyk B, Pindel A (2012) The influence of isolation stress on the (re)organization of cell walls in protoplasts of in vitro recalcitrant plants. Biotechnologia 93(2):102–108

    Article  CAS  Google Scholar 

  • Yildiz-Aktas L, Dagnon S, Gurel A, Gesheva E, Edreva A (2009) Drought tolerance in cotton: involvement of non-enzymatic ROS scavenging compounds. J Agron Crop Sci 195(4):247–253

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This Research was financed by the Ministry of Science and Higher Education of the Republic of Poland (Project No. BM4569).

Author contributions

B.P. designed and performed experiments, analysed data and wrote the paper; K.T. discussed the results and wrote the paper; I.K. gave technical support and performed experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Piwowarczyk.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piwowarczyk, B., Tokarz, K. & Kamińska, I. Responses of grass pea seedlings to salinity stress in in vitro culture conditions. Plant Cell Tiss Organ Cult 124, 227–240 (2016). https://doi.org/10.1007/s11240-015-0887-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0887-z

Keywords

Navigation