Skip to main content
Log in

Effect of n-butanol and cold pretreatment on the cytoskeleton and the ultrastructure of maize microspores when cultured in vitro

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The improvement of androgenic induction efficiency of anther cultures is an important goal for plant biotechnology. Although n-butanol has been proven to enhance the androgenic induction, the structural background of this effect has not been investigated in detail. In the present study, the cytological and ultrastructural alterations triggered by two treatments that improve androgenic induction, n-butanol (0.2 % n-butanol for 6 h) and cold pretreatment (7 °C for 10 days) were studied in maize anther cultures. Both treatments increased the frequency of responding microspores, and the highest embryo yield (20.9 embryos per 100 plated anthers compared to 0.5/100 anthers in control) was achieved when a combination of both treatments was applied. To study the effect of the treatments on the cytoskeleton, we labeled microtubules using indirect immunofluorescence and actin filaments by rhodamine phalloidin. Cold pretreatment increased the quantity of actin filaments, whereas the microtubule network remained unaffected. In contrast, n-butanol treatment triggered the reversible depolymerization of microtubules, without having any effect on the actin network. Transmission electron microscopy revealed that n-butanol induced the formation of irregular cell walls. Autophagy-related structures were present during the early development of embryogenic microspores following both treatments, but autophagy was only sustained after fourteen days in microspore-derived structures treated with n-butanol. The results support the concept that the androgenic developmental switch is assisted by cytoskeletal rearrangements, which may facilitate androgenic induction through the promotion of symmetric divisions. The longer duration of autophagic processes may also play a role in the elevated embryo induction after n-butanol treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdrakhamanova A, Wang QY, Khokhlova L, Nick P (2003) Is microtubule disassembly a trigger for cold acclimation? Plant Cell Physiol 44:676–686

    Article  CAS  PubMed  Google Scholar 

  • Alché JD, Castro AJ, Solymoss M et al (2000) Cellular approach to the study of androgenesis in maize anthers: immunocytochemical evidence of the involvement of the ubiquitin degradative pathway in androgenesis induction. J Plant Physiol 156:146–155

    Article  Google Scholar 

  • Barnabás B (2003) Anther culture of maize (Zea mays L.). In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. Springer, Netherlands, pp 103–108

    Chapter  Google Scholar 

  • Barnabás B, Obert B, Kovács G (1999) Colchicine, an efficient genome-doubling agent for maize (Zea mays L.) microspores cultured in anthero. Plant Cell Rep 18:858–862

    Article  Google Scholar 

  • Barnabás B, Szakács É, Karsai I, Bedő Z (2001) In vitro androgenesis of wheat: from fundamentals to practical application. Euphytica 119:211–216

    Article  Google Scholar 

  • Barton DA, Cantrill LC, Law AMK et al (2014) Chilling to zero degrees disrupts pollen formation but not meiotic microtubule arrays in Triticum aestivum L. Plant, Cell Environ 37:2781–2794

    Article  CAS  Google Scholar 

  • Binarova P, Hause G, Cenklová V et al (1997) A short severe heat shock is required to induce embryogenesis in late bicellular pollen of Brassica napus L. Sex Plant Reprod 10:200–208

    Article  Google Scholar 

  • Broughton S (2011) The application of n-butanol improves embryo and green plant production in anther culture of Australian wheat (Triticum aestivum L.) genotypes. Crop Pasture Sci 62:813–822

    Article  CAS  Google Scholar 

  • Castillo AM, Nielsen NH, Jensen A, Vallés MP (2014) Effects of n-butanol on barley microspore embryogenesis. Plant Cell, Tissue Organ Cult 117:411–418

    Article  CAS  Google Scholar 

  • Collings DA (2008) Crossed-wires: interactions and cross-talk between the microtubule and microfilament networks in plants. In: Nick P (ed) Plant microtubules. Springer, Berlin, pp 47–79

    Chapter  Google Scholar 

  • Corral-Martínez P, Parra-Vega V, Seguí-Simarro JM (2013) Novel features of Brassica napus embryogenic microspores revealed by high pressure freezing and freeze substitution: evidence for massive autophagy and excretion-based cytoplasmic cleaning. J Exp Bot 64:3061–3075

    PubMed  Google Scholar 

  • De Storme N, Copenhaver GP, Geelen D (2012) Production of diploid male gametes in Arabidopsis by cold-induced destabilization of postmeiotic radial microtubule arrays. Plant Physiol 160:1808–1826

    Article  PubMed Central  PubMed  Google Scholar 

  • Dhonukshe P, Laxalt AM, Goedhart J et al (2003) Phospholipase D activation correlates with microtubule reorganization in living plant cells. Plant Cell Online 15:2666–2679

    Article  CAS  Google Scholar 

  • Dunwell JM (2010) Haploids in flowering plants: origins and exploitation. Plant Biotechnol J 8:377–424

    Article  CAS  PubMed  Google Scholar 

  • Eady C, Lindsey K, Twell D (1995) The significance of microspore division and division symmetry for vegetative cell-specific transcription and generative cell differentiation. Plant Cell Online 7:65–74

    Article  CAS  Google Scholar 

  • Eleftheriou EP, Palevitz BA (1992) The effect of cytochalasin D on preprophase band organization in root tip cells of Allium. J Cell Sci 103:989–998

    CAS  Google Scholar 

  • Földesiné Füredi PK, Ambrus H, Barnabás B (2011) The effect of n-butanol and 2-amino-ethanol on the in vitro androgenesis of maize. Acta Biol Szeged 55:77–78

    Google Scholar 

  • Földesiné Füredi PK, Ambrus H, Barnabás B (2012) Development of cultured microspores of maize in the presence of n-butanol and 2-aminoethanol. Acta Agron Hung 60:183–189

    Article  Google Scholar 

  • Gaillard A, Vergne P, Beckert M (1991) Optimization of maize microspore isolation and culture conditions for reliable plant regeneration. Plant Cell Rep 10:55–58

    Article  CAS  PubMed  Google Scholar 

  • Gardiner J, Collings DA, Harper JDI, Marc J (2003) The effects of the phospholipase D-antagonist 1-butanol on seedling development and microtubule organisation in Arabidopsis. Plant Cell Physiol 44:687–696

    Article  CAS  PubMed  Google Scholar 

  • Genovesi AD, Collins GB (1982) In vitro production of haploid plants of corn via anther culture. Crop Sci 22:1137

    Article  Google Scholar 

  • Gervais C, Newcomb W, Simmonds DH (2000) Rearrangement of the actin filament and microtubule cytoskeleton during induction of microspore embryogenesis in Brassica napus L. cv. Topas. Protoplasma 213:194–202

    Article  Google Scholar 

  • Higaki T, Kutsuna N, Sano T et al (2010) Quantification and cluster analysis of actin cytoskeletal structures in plant cells: role of actin bundling in stomatal movement during diurnal cycles in Arabidopsis guard cells. Plant J 61:156–165

    Article  CAS  PubMed  Google Scholar 

  • Hirase A, Hamada T, Itoh TJ et al (2006) n-Butanol induces depolymerization of microtubules in vivo and in vitro. Plant Cell Physiol 47:1004–1009

    Article  CAS  PubMed  Google Scholar 

  • Höfer M (2004) In vitro androgenesis in apple—improvement of the induction phase. Plant Cell Rep 22:365–370

    Article  PubMed  Google Scholar 

  • Holmsen JD, Hess FD (1985) Comparison of the disruption of mitosis and cell plate formation in oat roots by DCPA, colchicine and propham. J Exp Bot 36:1504–1513

    Article  CAS  Google Scholar 

  • Hong Y, Zhang W, Wang X (2010) Phospholipase D and phosphatidic acid signalling in plant response to drought and salinity. Plant, Cell Environ 33:627–635

    Article  CAS  Google Scholar 

  • Huang S, Gao L, Blanchoin L, Staiger CJ (2006) Heterodimeric capping protein from Arabidopsis is regulated by phosphatidic acid. Mol Biol Cell 17:1946–1958

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Inoué S (1952) The effect of colchicine on the microscopic and submicroscopic structure of the mitotic spindle. Exp Cell Res Suppl 2:305–318

    Google Scholar 

  • Islam SMS, Tuteja N (2012) Enhancement of androgenesis by abiotic stress and other pretreatments in major crop species. Plant Sci 182:134–144

    Article  CAS  PubMed  Google Scholar 

  • Kost B, Chua N-H (2002) The plant cytoskeleton: vacuoles and cell walls make the difference. Cell 108:9–12

    Article  CAS  PubMed  Google Scholar 

  • Kuo C, Lu W, Kui Y (1986) Corn (Zea mays L.): production of pure lines through anther culture. In: Bajaj Y (ed) Biotechnology in agriculture and forestry, vol 2. Crops I. Springer, Berlin, pp 152–164

  • Lalonde S, Beebe DU, Saini HS (1997) Early signs of disruption of wheat anther development associated with the induction of male sterility by meiotic-stage water deficit. Sex Plant Reprod 10:40–48

    Article  Google Scholar 

  • Lanza M, Garcia-Ponce B, Castrillo G et al (2012) Role of actin cytoskeleton in brassinosteroid signaling and in its integration with the auxin response in plants. Dev Cell 22:1275–1285

    Article  CAS  PubMed  Google Scholar 

  • Li F, Vierstra RD (2012) Autophagy: a multifaceted intracellular system for bulk and selective recycling. Trends Plant Sci 17:526–537

    Article  CAS  PubMed  Google Scholar 

  • Li J, Henty-Ridilla JL, Huang S et al (2012) Capping protein modulates the dynamic behavior of actin filaments in response to phosphatidic acid in Arabidopsis. Plant Cell Online 24:3742–3754

    Article  CAS  Google Scholar 

  • Liscovitch M, Czarny M, Fiucci G, Tang X (2000) Phospholipase D: molecular and cell biology of a novel gene family. Biochem J 345:401–415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu B, Palevitz BA (1992) Organization of cortical microfilaments in dividing root cells. Cell Motil Cytoskeleton 23:252–264

    Article  Google Scholar 

  • Liu B, Hotta T, Ho C-MK, Lee Y-RJ (2011) Microtubule organization in the phragmoplast. In: Liu B (ed) The plant cytoskeleton. Springer, New York, pp 207–225

    Chapter  Google Scholar 

  • Lovy-Wheeler A, Wilsen KL, Baskin TI, Hepler PK (2005) Enhanced fixation reveals the apical cortical fringe of actin filaments as a consistent feature of the pollen tube. Planta 221:95–104

    Article  CAS  PubMed  Google Scholar 

  • Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) (2003) Doubled haploid production in crop plants: a manual. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Maraschin SF, Gaussand G, Pulido A et al (2005a) Programmed cell death during the transition from multicellular structures to globular embryos in barley androgenesis. Planta 221:459–470

    Article  Google Scholar 

  • Maraschin SF, de Priester W, Spaink HP, Wang M (2005b) Androgenic switch: an example of plant embryogenesis from the male gametophyte perspective. J Exp Bot 56:1711–1726

    Article  CAS  PubMed  Google Scholar 

  • Maraschin SdeF, Caspers M, Potokina E et al (2006) cDNA array analysis of stress-induced gene expression in barley androgenesis. Physiol Plant 127:535–550

    Article  CAS  Google Scholar 

  • Mascarenhas JP (1990) Gene activity during pollen development. Annu Rev Plant Biol 41:317–338

    Article  Google Scholar 

  • Massonneau A, Coronado M-J, Audran A et al (2005) Multicellular structures developing during maize microspore culture express endosperm and embryo-specific genes and show different embryogenic potentialities. Eur J Cell Biol 84:663–675

    Article  CAS  PubMed  Google Scholar 

  • Mitykó J, Andrásfalvy A, Csilléry G, Fári M (1995) Anther-culture response in different genotypes and F1 hybrids of pepper (Capsicum annuum L.). Plant Breed 114:78–80

    Article  Google Scholar 

  • Motes CM, Pechter P, Yoo CM et al (2005) Differential effects of two phospholipase D inhibitors, 1-butanol and N-acylethanolamine, on in vivo cytoskeletal organization and Arabidopsis seedling growth. Protoplasma 226:109–123

    Article  CAS  PubMed  Google Scholar 

  • Munnik T, Arisz SA, Vrije TD, Musgrave A (1995) G protein activation stimulates phospholipase D signaling in plants. Plant Cell Online 7:2197–2210

    Article  CAS  Google Scholar 

  • Nishikawa S, Zinkl GM, Swanson RJ et al (2005) Callose (β-1,3 glucan) is essential for Arabidopsis pollen wall patterning, but not tube growth. BMC Plant Biol 5:22

    Article  PubMed Central  PubMed  Google Scholar 

  • Obert B, Barnabás B (2004) Colchicine induced embryogenesis in maize. Plant Cell, Tissue Organ Cult 77:283–285

    Article  CAS  Google Scholar 

  • Petrášek J, Schwarzerová K (2009) Actin and microtubule cytoskeleton interactions. Curr Opin Plant Biol 12:728–734

    Article  PubMed  Google Scholar 

  • Pleskot R, Potocký M, Pejchar P et al (2010) Mutual regulation of plant phospholipase D and the actin cytoskeleton. Plant J 62:494–507

    Article  CAS  PubMed  Google Scholar 

  • Pleskot R, Pejchar P, Žárský V et al (2012) Structural insights into the inhibition of actin-capping protein by interactions with phosphatidic acid and phosphatidylinositol (4,5)-bisphosphate. PLoS Comput Biol 8:e1002765

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pleskot R, Li J, Žárský V et al (2013) Regulation of cytoskeletal dynamics by phospholipase D and phosphatidic acid. Trends Plant Sci 18:496–504

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen CG, Wright AJ, Müller S (2013) The role of the cytoskeleton and associated proteins in determination of the plant cell division plane. Plant J 75:258–269

    Article  CAS  PubMed  Google Scholar 

  • Reed SM, Trigiano RN, Gray DJ (2004) Haploid cultures. In: Trigiano RN, Gray DJ (eds) Plant development and biotechnology. CRC Press, Boca Raton, pp 225–234

    Chapter  Google Scholar 

  • Ruelland E, Cantrel C, Gawer M et al (2002) Activation of phospholipases C and D is an early response to a cold exposure in Arabidopsis suspension cells. Plant Physiol 130:999–1007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schmiedel G, Reiss H-D, Schnepf E (1981) Associations between membranes and microtubules during mitosis and cytokinesis in caulonema tip cells of the moss Funaria hygrometrica. Protoplasma 108:173–190

    Article  Google Scholar 

  • Seguí-Simarro JM, Nuez F (2008) How microspores transform into haploid embryos: changes associated with embryogenesis induction and microspore-derived embryogenesis. Physiol Plant 134:1–12

    Article  PubMed  Google Scholar 

  • Shariatpanahi ME, Bal U, Heberle-Bors E, Touraev A (2006) Stresses applied for the re-programming of plant microspores towards in vitro embryogenesis. Physiol Plant 127:519–534

    Article  CAS  Google Scholar 

  • Sheahan MB, Rose RJ, McCurdy DW (2004) Organelle inheritance in plant cell division: the actin cytoskeleton is required for unbiased inheritance of chloroplasts, mitochondria and endoplasmic reticulum in dividing protoplasts. Plant J 37:379–390

    Article  CAS  PubMed  Google Scholar 

  • Siegrist SE, Doe CQ (2007) Microtubule-induced cortical cell polarity. Genes Dev 21:483–496

    Article  CAS  PubMed  Google Scholar 

  • Simmonds DH, Keller WA (1999) Significance of preprophase bands of microtubules in the induction of microspore embryogenesis of Brassica napus. Planta 208:383–391

    Article  CAS  Google Scholar 

  • Smertenko A, Franklin-Tong VE (2011) Organisation and regulation of the cytoskeleton in plant programmed cell death. Cell Death Differ 18:1263–1270

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Solís M-T, Rodríguez-Serrano M, Meijón M et al (2012) DNA methylation dynamics and MET1a-like gene expression changes during stress-induced pollen reprogramming to embryogenesis. J Exp Bot 63:6431–6444

    Article  PubMed Central  PubMed  Google Scholar 

  • Soriano M, Cistué L, Castillo AM (2008) Enhanced induction of microspore embryogenesis after n-butanol treatment in wheat (Triticum aestivum L.) anther culture. Plant Cell Rep 27:805–811

    Article  CAS  PubMed  Google Scholar 

  • Soriano M, Li H, Boutilier K (2013) Microspore embryogenesis: establishment of embryo identity and pattern in culture. Plant Reprod 26:181–196

    Article  PubMed Central  PubMed  Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    Article  CAS  PubMed  Google Scholar 

  • Szakács É, Barnabás B (1995) The effect of colchicine treatment on microspore division and microspore-derived embryo differentiation in wheat (Triticum aestivum L.) anther culture. Euphytica 83:209–213

    Article  Google Scholar 

  • Tischner T, Kőszegi B, Veisz O (1997) Climatic programs used in the Martonvasar phytotron most frequently in recent years. Acta Agron Hung 45:85–104

    Google Scholar 

  • Touraev A, Vicente O, Heberle-Bors E (1997) Initiation of microspore embryogenesis by stress. Trends Plant Sci 2:297–302

    Article  Google Scholar 

  • Uváčková L’, Takáč T, Boehm N et al (2012) Proteomic and biochemical analysis of maize anthers after cold pretreatment and induction of androgenesis reveals an important role of anti-oxidative enzymes. J Proteomics 75:1886–1894

    Article  PubMed  Google Scholar 

  • Varnier AL, Jacquard C, Clément C (2009) Programmed cell death and microspore embryogenesis. In: Touraev DA, Forster DBP, Jain DSM (eds) Advances in Haploid Production in Higher Plants. Springer, Netherlands, pp 147–154

    Chapter  Google Scholar 

  • Wang X, Guo L, Wang G, Li M (2014a) PLD: Phospholipase Ds in plant signaling. In: Wang X (ed) Phospholipases in plant signaling. Springer, Berlin, pp 3–26

    Chapter  Google Scholar 

  • Wang X, Su Y, Liu Y et al (2014b) Phosphatidic acid as lipid messenger and growth regulators in plants. In: Wang X (ed) Phospholipases in plant signaling. Springer, Berlin, pp 69–92

    Chapter  Google Scholar 

  • Zagorska NA, Shtereva A, Dimitrov BD, Kruleva MM (1998) Induced androgenesis in tomato (Lycopersicon esculentum Mill.) I. Influence of genotype on androgenetic ability. Plant Cell Rep 17:968–973

    Article  CAS  Google Scholar 

  • Zhang Q, Lin F, Mao T et al (2012) Phosphatidic acid regulates microtubule organization by interacting with MAP65-1 in response to salt stress in Arabidopsis. Plant Cell Online 24:4555–4576

    Article  CAS  Google Scholar 

  • Zheng MY, Weng Y, Sahibzada R, Konzak CF (2003) Isolated microspore culture in maize (Zea mays L.), production of doubled-haploids via induced androgenesis. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. Springer, Netherlands, pp 95–102

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by Hungarian Scientific Research Fund grant No. OTKA 80260 and the GENPROF IF-18/2012 Research Infrastructure Grant from the Hungarian Academy of Sciences. The authors wish to thank Victor Žárský, Lukas Synek and Roman Pleskot for kindly sharing methods for the fluorescent visualisation of the plant cytoskeleton, and Erika Gondos, Emese Bék and Szilvia Fodor for their excellent technical assistance.

Author contributions

AF planned and performed the cytological and ultrastructural analysis, carried out the statistical analysis, interpreted the results and drafted the manuscript. BB conceived the study aims, and critically reviewed the manuscript; KJ contributed to the drafting and critically reviewed the manuscript. PKFF and HA performed and interpreted the results of the anther culture experiments, LSZ contributed to the ultrastructural analysis and critically reviewed the manuscript. All authors approved the final version of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Jäger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fábián, A., Földesiné Füredi, P.K., Ambrus, H. et al. Effect of n-butanol and cold pretreatment on the cytoskeleton and the ultrastructure of maize microspores when cultured in vitro. Plant Cell Tiss Organ Cult 123, 257–271 (2015). https://doi.org/10.1007/s11240-015-0829-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0829-9

Keywords

Navigation