Skip to main content
Log in

Embryogenic potential of immature zygotic embryos of Passiflora: a new advance for in vitro propagation without plant growth regulators

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

In vitro strategies for Passiflora have been developed owing to its economic and ecological importance. However, plantlet regeneration through somatic embryogenesis has presented some problems, such as the reproducibility of the protocol and formation of abnormal embryos and plantlets. Thus, this study aimed to establish a protocol exploring the embryogenic potential of immature zygotic embryos (IZE) of the wild species Passiflora miniata Vanderpl. and Passiflora speciosa Gardn. Friable calli, which formed on the abaxial surface of the cotyledons, yielded globular, heart-shaped, torpedo and cotyledonary somatic embryos, characterising the embryogenic response as asynchronous. A high percentage of normal regenerants (90 %) was obtained from IZE in media lacking 2,4-dichlorophenoxyacetic acid (2,4-D) in comparison to the value of normal plantlets (60 %) regenerated from mature zygotic embryos inoculated in media with 2,4-D. This result demonstrates that IZE of P. miniata and P. speciosa possess sufficient levels of endogenous phytohormones to trigger a high rate of indirect somatic embryogenesis. All regenerated plantlets had the same genome size and chromosome number as the explant donor plants. Therefore, the indirect embryogenic pathway, employing IZE inoculated into media free of growth regulators, did not cause changes in the karyotype and morphology. Based on these results, IZE should be considered as explant for the establishment of somatic embryogenesis in other species. Besides, a new, reliable and relatively rapid protocol to recover plantlets of P. miniata and P. speciosa yielded several plants, which were acclimatised and used for ornamental purposes and breeding programs, and for reintroduction into biological reserves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Amorim JS, Souza MM, Viana AJC, Corrêa RX, Araújo IS, Ahnert D (2014) Cytogenetic, molecular and morphological characterization of Passiflora capsularis L. and Passiflora rubra L. Plant Syst Evol 300:1147–1162. doi:10.1007/s00606-013-0952-1

    Article  Google Scholar 

  • Amugune NO, Gopalan HNB, Bytebier B (1993) Leaf disc regeneration of passion fruit. Afr Crop Sci J 1:99–104. doi:10.4314/acsj.v1i2.69896

    Google Scholar 

  • Anand SP, Jayakumar E, Jeyachandran R, Nandagobalan V, Doss A (2012) Direct organogenesis of Passiflora foetida L. through nodal explants. Plant Tissue Cult Biotech 22:87–91. doi:10.3329/ptcb.v22i1.11266

    Article  Google Scholar 

  • Bairu MW, Aremu AO, van Staden J (2011) Somaclonal variation in plants: causes and detection methods. Plant Growth Regul 63:147–173. doi:10.1007/s10725-010-9554-x

    Article  CAS  Google Scholar 

  • Benmahioul B, Kaïd-Harche M, Daguin F (2012) Influence of activated charcoal on in vitro embryo germination and growth of plantlets of pistachio (Pistacia vera L.). I J S N 3:613–616

    Google Scholar 

  • Bernacci LC, Cervi AC, Milward-de-Azevedo MA, Nunes TS, Imig DC, Mezzonato AC (2014) Passifloraceae. In: Lista de espécies da flora do Brasil. In: Jardim Botânico do Rio de Janeiro, Rio de Janeiro. http://www.floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB12506. Accessed 27 Jan 2015

  • Berros B, Hasbún R, Radojevic L, Salajova T, Cañal MJ, Rodríguez R (2005) Protocol for hazelnut somatic embryogenesis. In: Jain SM, Gupta PK (eds) Protocol for somatic embryogenesis in woody plants. Springer, Netherlands, pp 413–426. doi:10.1007/1-4020-2985-3_33

    Chapter  Google Scholar 

  • Choi YE, Yang DC, Park JC, Soh WY, Choi KT (1998) Regenerative ability of somatic single and multiple embryos from cotyledons of Korean ginseng on hormone-free medium. Plant Cell Rep 17:544–551. doi:10.1007/s002990050439

    Article  CAS  Google Scholar 

  • Clarindo WR, Carvalho CR, Mendonça MAC (2012) Ploidy instability in long-term in vitro cultures of Coffea arabica L. monitored by flow cytometry. Plant Growth Regul 68:533–538. doi:10.1007/s10725-012-9740-0

    Article  CAS  Google Scholar 

  • Ćosić T, Vinterhalter B, Vinterhalter D, Mitić N, Cingel A, Savić J, Bohanec B, Ninković S (2013) In vitro plant regeneration from immature zygotic embryos and repetitive somatic embryogenesis in kohlrabi (Brassica oleracea var. gongylodes). In Vitro Cell Dev Biol Plant 49:294–303. doi:10.1007/s11627-013-9517-9

    Article  Google Scholar 

  • Dornelas MC, Vieira MLC (1994) Tissue culture studies on species of Passiflora. Plant Cell Tissue Org 36:211–217. doi:10.1007/BF00037722

    Article  CAS  Google Scholar 

  • Elhiti M, Stasolla C (2011) The use of zygotic embryos as explants for in vitro propagation: an overview. In: Thorpe TA, Yeung EC (eds) Plant embryo culture. Humana Press, Totowa, pp 229–255. doi:10.1007/978-1-61737-988-8_17

    Chapter  Google Scholar 

  • Fehér A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Org 74:201–228. doi:10.1023/A:1024033216561

    Article  Google Scholar 

  • Fielding HB, Gardner G (1844) Sertum Plantarum; or drawings and descriptions of rare and undescribed plants from the author’s herbarium. Hippolyte Bailliere, London

    Google Scholar 

  • Fischer IH, Rezende JAM (2008) Diseases of passion flower (Passiflora spp.). Global Science Book, Hong Kong

    Google Scholar 

  • Gaj MD (2004) Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regul 43:27–47. doi:10.1023/B:GROW.0000038275.29262.fb

    Article  CAS  Google Scholar 

  • Galbraith DW, Harkins KR, Maddox JM, Ayres JM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissue. Science 220:1049–1051

    Article  CAS  PubMed  Google Scholar 

  • Gingas VM, Lineberger RD (1989) Asexual embryogenesis and plant regeneration in Quercus. Plant Cell Tissue Org 17:191–203. doi:10.1007/BF00046867

    Article  Google Scholar 

  • Hansen AK, Gilbert LE, Simpson BB, Downie SR, Cervi AC, Jansen RK (2006) Phylogenetic relationships and chromosome number evolution in Passiflora. Syst Bot 31:138–150. doi:10.1600/036364406775971769

    Article  Google Scholar 

  • Jain SM (2001) Tissue culture-derived variation in crop improvement. Euphytica 118:153–166. doi:10.1023/A:1004124519479

    Article  CAS  Google Scholar 

  • Jiménez VM, Thomas C (2005) Participation of plant hormones in determination and progression of somatic embryogenesis. In: Mujib A, Šamaj J (eds) somatic embryogenesis. Springer, Berlin Heidelberg, pp 103–118. doi:10.1007/7089_034

    Google Scholar 

  • Johansson L, Andersson B, Eriksson T (1982) Improvement of anther culture technique: activated charcoal bound in agar medium in combination with liquid medium and elevated CO2 concentration. Physiol Plantarum 54:24–30. doi:10.1111/j.1399-3054.1982.tb00571.x

    Article  Google Scholar 

  • Kamada H, Kobayashi K, Kiyosue T, Harada H (1989) Stress induced somatic embryogenesis in carrot and its application to synthetic seed production. In vitro Cell Dev Biol 25:1163–1166. doi:10.1007/BF02621268

    Article  Google Scholar 

  • Kamada H, Ishikawa K, Saga H, Harada H (1993) Induction of somatic embryogenesis in carrot by osmotic stress. Plant Tissue Cult Lett 10:38–44

    Article  CAS  Google Scholar 

  • Kong L, Attree SM, Fowke LC (1997) Changes of endogenous hormone levels in developing seeds, zygotic embryos and megagametophytes in Picea glauca. Physiol Plantarum 101:23–30. doi:10.1111/j.1399-3054.1997.tb01815.x

    Article  CAS  Google Scholar 

  • Konieczny R, Pilarska M, Tuleja M, Salaj T, Ilnicki T (2010) Somatic embryogenesis and plant regeneration in zygotic embryos of Trifolium nigrescens (Viv.). Plant Cell Tissue Org 100:123–130. doi:10.1007/s11240-009-9625-8

    Article  Google Scholar 

  • Krosnick SE, Porter-Utley KE, MacDougal JM, Jørgensen PM, McDade LA (2013) New insights into the evolution of Passiflora subgenus Decaloba (Passifloraceae): phylogenetic relationships and morphological synapomorphies. Syst Bot 38:692–713. doi:10.1600/036364413X670359

    Article  Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation: a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214. doi:10.1007/BF02342540

    Article  CAS  PubMed  Google Scholar 

  • Linnaeus C (1753) Species Plantarum. Stockholm, Sweden

  • López-Pérez AJ, Carreño J, Martínez-Cutillas A, Dabauza M (2005) High embryogenic ability and plant regeneration of table grapevine cultivars (Vitis vinifera L.) induced by activated charcoal. Vitis 44:79–85

    Google Scholar 

  • Luo Y, Koop HU (1997) Somatic embryogenesis in cultured immature zygotic embryos and leaf protoplasts of Arabidopsis thaliana ecotypes. Planta 202:387–396. doi:10.1007/s004250050141

    Article  CAS  PubMed  Google Scholar 

  • Mosquin D (2007) Passiflora miniata. In: UBC Botanical Garden, Vancouver, BC. http://www.botanicalgarden.ubc.ca/potd/2007/06/passiflora_miniata.php. Accessed 24 Jan 2015

  • Mujib A, Banerjee S, Ghosh PD (2007) Callus induction, somatic embryogenesis and chromosomal instability in tissue culture-raised hipperastrum (Hippeastrum hybridum cv. United Nations). Propag Ornam Plants 7:169–174

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plantarum 15:473–497

    Article  CAS  Google Scholar 

  • Nakayama F (1966) Cultivo in vitro de tejidos de Passiflora caerulea. Revista de la Facultad de Agronomía de la Universidad Nacional de La Plata 42:63–74

    Google Scholar 

  • Nissen P, Minocha SC (1993) Inhibition by 2,4-D of somatic embryogenesis in carrot as explored by its reversal by difluoromethylornithine. Physiol Plantarum 89:673–680. doi:10.1111/j.1399-3054.1993.tb05272.x

    Article  CAS  Google Scholar 

  • Nomura K, Komamine A (1985) Identification and isolation of single cells that produce somatic embryos at a high frequency in a carrot suspension culture. Plant Physiol 79:988–991

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Otto FJ (1990) DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. In: Darzynkiewicks Z, Crissman HA (eds) Methods in cell biology, vol 33. Academic, San Diego, pp 105–110

    Google Scholar 

  • Pan MJ, van Staden J (1998) The use of charcoal in in vitro culture: a review. Plant Growth Regul 26:155–163. doi:10.1023/A:1006119015972

    Article  CAS  Google Scholar 

  • Pasternak TP, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, van Onckelen HA, Dudits D, Fehér A (2002) The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa. Plant Physiol 129:1807–1819. doi:10.1104/pp.000810

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pavlović S, Vinterhalter B, Zdravković-Korać S, Vinterhalter D, Zdravković J, Cvikić D, Mitić N (2013) Recurrent somatic embryogenesis and plant regeneration from immature zygotic embryos of cabbage (Brassica oleracea var. capitata) and cauliflower (Brassica oleracea var. botrytis). Plant Cell Tissue Org 113:397–406. doi:10.1007/s11240-012-0279-6

    Article  Google Scholar 

  • Pescador R, Kerbauy GB, Viviani D, Kraus JE (2008) Anomalous somatic embryos in Acca sellowiana (O. Berg) Burret (Myrtaceae). Revista Brasil Bot 31:155–164. doi:10.1590/S0100-84042008000100014

    Google Scholar 

  • Pinto DLP, Barros BA, Viccini LF, Campos JMS, Silva ML, Otoni WC (2010) Ploidy stability of somatic embryogenesis-derived Passiflora cincinnata Mast. plants as assessed by flow cytometry. Plant Cell Tissue Org 103:71–79. doi:10.1007/s11240-010-9756-y

    Article  Google Scholar 

  • Pinto DLP, Almeida AMR, Rêgo MM, Silva ML, Oliveira EJ, Otoni WC (2011) Somatic embryogenesis from mature zygotic embryos of commercial passionfruit (Passiflora edulis Sims) genotypes. Plant Cell Tissue Org 107:521–530. doi:10.1007/s11240-011-0003-y

    Article  Google Scholar 

  • Praça-Fontes MM, Carvalho CR, Clarindo WR (2009) A practical and reliable procedure for in vitro induction of tetraploid tomato. Sci Hort 122:501–505. doi:10.1016/j.scienta.2009.05.032

    Article  Google Scholar 

  • Praça-Fontes MM, Carvalho CR, Clarindo WR (2011a) C-value reassessment of plant standards: an image cytometry approach. Plant Cell Rep 30:2303–2312. doi:10.1007/s00299-011-1135-6

    Article  PubMed  Google Scholar 

  • Praça-Fontes MM, Carvalho CR, Clarindo WR, Cruz CD (2011b) Revisiting the DNA C-values of the genome size-standards used in plant flow cytometry to choose the “best primary standards”. Plant Cell Rep 30:1183–1191. doi:10.1007/s00299-011-1026-x

    Article  PubMed  Google Scholar 

  • Riquelme PC, Leal DR, Carrillo KS, Moraga MU, Aguilar SV, Bolus SJ, Olate MS (2011) Endogenous quantification of abscisic acid and indole-3-acetic acid in somatic and zygotic embryos of Nothofagus alpine (Poepp. & Endl.) Oerst. Chil J Agric Res 71:542–548. doi:10.4067/S0718-58392011000400007

    Article  Google Scholar 

  • Rosa YBCJ, Dornelas MC (2012) In vitro plant regeneration and de novo differentiation of secretory trichomes in Passiflora foetida L. (Passifloraceae). Plant Cell Tissue Org 108:91–99. doi:10.1007/s11240-011-0016-6

    Article  CAS  Google Scholar 

  • Rosa YBCJ, Bello CCM, Dornelas MC (2015) Species-dependent divergent responses to in vitro somatic embryo induction in Passiflora spp. Plant Cell Tissue Org Cult 120:69–77. doi:10.1007/s11240-014-0580-7

    Article  CAS  Google Scholar 

  • Sharp WR, Sohndahl MR, Evans AE, Caldas LA, Maraffa SB (1980) The physiology of in vitro asexual embryogenesis. Hortic Rev 2:268–310. doi:10.1002/9781118060759.ch6

    CAS  Google Scholar 

  • Silva TC, Carvalho CR (2013) Vertical heterogeneity of DNA ploidy level assessed by flow cytometry in calli of Passiflora cincinnata. In Vitro Cell Dev Biol Plant 50:158–165. doi:10.1007/s11627-013-9582-0

    Article  Google Scholar 

  • Silva ML, Pinto DLP, Guerra MP, Floh EIS, Bruckner CH, Otoni WC (2009) A novel regeneration system for a wild passion fruit species (Passiflora cincinnata Mast.) based on somatic embryogenesis from mature zygotic embryos. Plant Cell Tissue Org 99:47–54. doi:10.1007/s11240-009-9574-2

    Article  Google Scholar 

  • Smith DL, Krikorian AD (1990) Somatic proembryo production from excised, wounded zygotic carrot embryos on hormone-free medium: evaluation of the effects of pH, ethylene and activated charcoal. Plant Cell Rep 9:34–37. doi:10.1007/BF00232131

    Article  CAS  Google Scholar 

  • Tenning P, Weich EW, Kjärsgaard UB, Lelu MA, Nihjgård (1992) Somatic embryogenesis from zygotic embryos of sugar beet (Beta vulgaris L.). Plant Sci 81:103–109. doi:10.1016/0168-9452(92)90029-L

    Article  Google Scholar 

  • Vanderplank J (2006) Plate 562. Passiflora miniata (Passifloraceae). Curtis’s Bot Mag 23:223–230. doi:10.1111/j.1467-8748.2006.00533.x

    Article  Google Scholar 

  • Vieira LM, Rocha DI, Taquetti MF, Silva LC, Campos JMS, Viccini LF, Otoni WC (2014) In vitro plant regeneration of Passiflora setacea D.C. (Passifloraceae): the influence of explant type, growth regulators, and incubation conditions. In Vitro Cell Dev Biol Plant 50:738–745. doi:10.1007/s11627-014-9650-0

    Article  CAS  Google Scholar 

  • Von Arnold S (2008) Somatic embryogenesis. In: George EF, Hall MA, De Klerk G-J (eds) Plant propagation by tissue culture. Exegetics, Basingstoke, UK

    Google Scholar 

  • Yockteng R, d’Eeckenbrugge GC, Souza-Chies TT (2011) Passiflora. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Springer, Berlin Heidelberg, pp 129–171

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; Brasília, DF—Brazil), Fundação de Amparo à Pesquisa do Espírito Santo (FAPES; Vitória, ES—Brazil) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES; Brasília, DF—Brazil) for financial support, and to the researchers of the Parque Estadual Cachoeira da Fumaça Atlantic rainforest (Alegre, ES—Brazil) and Amazon rainforest (Carlinda, MT—Brazil) for support in collecting the biological material.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wellington Ronildo Clarindo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, D.A.T., Sattler, M.C., Carvalho, C.R. et al. Embryogenic potential of immature zygotic embryos of Passiflora: a new advance for in vitro propagation without plant growth regulators. Plant Cell Tiss Organ Cult 122, 629–638 (2015). https://doi.org/10.1007/s11240-015-0796-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0796-1

Keywords

Navigation