Skip to main content
Log in

In vitro plant regeneration and de novo differentiation of secretory trichomes in Passiflora foetida L. (Passifloraceae)

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The only species in the genus Passiflora (Passifloraceae) known to produce resin glands is P. foetida. These glands are secretory trichomes mainly present on the floral bracts and leaf stipules. The secretion produced by these glands has received attention recently due to the presence of substances with pharmacological properties. Attempts to apply in vitro cell culture methods for the large scale production of highly valuable metabolites has been rather limited due to the fact that these compounds are produced by highly differentiated secretory cells in trichomes which are seldom obtained or because differentiation is inhibited by in vitro conditions. Here we describe the in vitro plant regeneration of P. foetida obtained via organogenesis, using mature zygotic embryos as explants. Differentiated plantlets and, more important, the de novo differentiation of secretory trichomes in vitro could be observed in less than 30 days. There was a clear effect of the concentration of 2,4-dichlorophenoxyacetic acid in the culture media on the regeneration of plants and on the differentiation of glandular trichomes. Our results should be useful for the micropropagation of P. foetida, as well as for studies of the process of secretory trichome differentiation and the implemention of biotechnological methodologies for in vitro mass production of passifloricin and/or other substances present in the P. foetida resin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agrawal AA (1998) Induced responses to herbivory and increased plant performance. Science 279:1201–1202

    Article  PubMed  CAS  Google Scholar 

  • Bandyopadhyay T, Gangopadhyay G, Poddar R, Mukherjee KK (2004) Trichomes: their diversity distribution and density in acclimatization of teak (Tectona grandis L.) plants grown in vitro. Plant Cell Tiss Organ Cult 78:113–121

    Article  Google Scholar 

  • Becerra DC, Forero AP, Góngora GA (2004) Age and physiological condition of donor plants affect in vitro morphogenesis in leaf explants of Passiflora edulis f. flavicarpa. Plant Cell Tissue Organ Cult 79:87–90

    Article  Google Scholar 

  • Bonfill M, Mangas S, Moyano E, Cusido RM, Palazón J (2011) Production of centellosides and phytosterols in cell suspension cultures of Centella asiatica. Plant Cell Tiss Organ Cult 104:61–67

    Article  CAS  Google Scholar 

  • Braglia L, De Benedetti L, Giovannini A, Nicoletti F, Bianchini C, Pepino L, Mercuri A (2010) In vitro plant regeneration as a tool to improve ornamental characters in Passiflora species. Acta Hortic 855:47–52

    Google Scholar 

  • Dawan S, Shasany AK, Naqvi AA, Kumar S, Khanuja SPS (2003) Menthol tolerant clones of Mentha arvensis: approach for in vitro selection of menthol rich genotypes. Plant Cell Tiss Organ Cult 75:87–94

    Article  Google Scholar 

  • Delbarre A, Muller P, Imhoff V, Guern J (1996) Comparison of mechanisms controlling uptake and accumulation of 2, 4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells. Planta 198:532–541

    Article  CAS  Google Scholar 

  • Dodsworth S (2009) A diverse and intricate signalling network regulates stem cell fate in the shoot apical meristem. Dev Biol 336:1–9

    Article  PubMed  CAS  Google Scholar 

  • Dornelas MC, Vieira MLC (1993) Plant regeneration from protoplast cultures of Passiflora edulis var. flavicarpa Deg. and P. cincinnata Mast. Plant Cell Rep 13:103–106

    Article  CAS  Google Scholar 

  • Dornelas MC, Vieira MLC (1994) Tissue culture on species of Passiflora. Plant Cell Tissue Organ Cult 36:211–217

    Article  CAS  Google Scholar 

  • Dornelas MC, Vieira MLC, Appezzato-da-Gloria B (1992) Histological analysis of organogenesis and somatic embryogenesis induced in immature tissues of Stylosanthes scabra. Ann Bot 70:477–482

    CAS  Google Scholar 

  • Durkee LT, Baird CW, Cohen PF (1984) Light and electron microscopy of the resin glands of Passiflora foetida (Passifloraceae). Am J Bot 71:596–602

    Article  Google Scholar 

  • Echeverri F, Arango V, Quiñones W, Torres F, Escobar G, Rosero Y, Archbold R (2001) Passifloricins, polyketides alpha-pyrones from Passiflora foetida. Phytochemistry 56:881–885

    Article  PubMed  CAS  Google Scholar 

  • Fernando JA, Vieira ML, Machado SR, Appezzato-da-Glória B (2007) New insight into the in vitro organogenesis process: the case of Passiflora. Plant Cell Tiss Organ Cult 91:37–44

    Article  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Garcia R, Pacheco G, Falcão E, Borges G, Mansur E (2011) Influence of type of explants, plant growth regulators, salt composition of basal medium, and light on callogenesis and regeneration in Passiflora suberosa L. (Passifloraceae). Plant Cell Tiss Organ Cult 106:47–54

    Article  CAS  Google Scholar 

  • Glover BJ (2000) Differentiation in plant epidermal cells. J Exp Bot 51:497–505

    Article  PubMed  CAS  Google Scholar 

  • Göpfert JC, Macnevin G, Ro DK, Spring O (2009) Identification, functional characterization and developmental regulation of sesquiterpene synthases from sunflower capitate glandular trichomes. BMC Plant Biol 9:86

    Article  PubMed  Google Scholar 

  • Gordon SP, Heisler MG, Reddy GV, Ohno C, Das P, Meyerowitz EM (2007) Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development 134:3539–3548

    Article  PubMed  CAS  Google Scholar 

  • Gurel E, Yucesan B, Aglic E, Gurel S, Verma S et al (2011) Regeneration and cardiotonic glycoside production in Digitalis davisiana Heywood (Alanya Foxglove). Plant Cell Tiss Organ Cult 104:217–225

    Article  CAS  Google Scholar 

  • Guzzo F, Ceoldo S, Andretta F, Levi M (2004) In vitro culture from mature seeds of Passiflora species. Sci Agric 61:108–113

    Article  CAS  Google Scholar 

  • Hamant O, Traas J, Boudaoud A (2010) Regulation of shape and patterning in plant development. Curr Opin Genet Dev 20:454–459

    Article  PubMed  CAS  Google Scholar 

  • Hare JD (2007) Variation in herbivore and methyl jasmonate-induced volatiles among genetic lines of Datura wrightii. J Chem Ecol 33:2028–2043

    Article  PubMed  CAS  Google Scholar 

  • Jansen WA (1962) Botanical histochemistry: principles and practice. WR Freeman, San Francisco

    Google Scholar 

  • Kang JH, Liu G, Shi F, Jones AD, Beaudry RM, Howe GA (2010) The tomato odorless-2 mutant is defective in trichome-based production of diverse specialized metabolites and broad-spectrum resistance to insect herbivores. Plant Physiol 154:262–272

    Article  PubMed  CAS  Google Scholar 

  • Kim TD, Lee BS, Kim TS, Choi YE (2007) Developmental plasticity of glandular trichomes into somatic embryogenesis in Tilia amurensis. Ann Bot 100:177–183

    Article  PubMed  CAS  Google Scholar 

  • Kiselev KV, Tyunin AP, Manyakhin AY, Zhuravlev YN (2011) Resveratrol content and expression patterns of stilbene synthase genes in Vitis amurensis cells treated with 5-azacytidine. Plant Cell Tiss Organ Cult 105:65–72

    Article  CAS  Google Scholar 

  • Levin DA (1973) The role of trichomes in plant defense. Quart Rev Plant Biol 48:3–15

    Google Scholar 

  • Makunga NP, van Staden J (2008) An efficient system for the production of clonal plantlets of the medicinally important aromatic plant: Salvia africana-lutea L. Plant Cell Tiss Organ Cult 92:63–72

    Article  Google Scholar 

  • Mohamed ME, Hicks RGT, Blakesley D (1996) Shoot regeneration from mature endosperm of Passiflora foetida. Plant Cell Tiss Organ Cult 46:161–164

    Article  CAS  Google Scholar 

  • Morone-Fortunato I, Avato P (2008) Plant development and synthesis of essential oils in micropropagated and mycorrhiza inoculated plants of Origanum vulgare L. ssp. hirtum (Link) Ietswaart. Plant Cell Tiss Organ Cult 93:139–149

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ngan A, Conduit R (2011) A double-blind, placebo-controlled investigation of the effects of Passiflora incarnata (passionflower) herbal tea on subjective sleep quality. Phytoter Res. doi:10.1002/ptr.3400

  • Pati PK, Kaur J, Singh P (2011) A liquid culture system for shoot proliferation and analysis of pharmaceutically active constituents of Catharanthus roseus (L.) G. Don. Plant Cell Tiss Organ Cult 105:299–307

    Article  CAS  Google Scholar 

  • Petrásek J, Friml J (2009) Auxin transport routes in plant development. Development 136:2675–2688

    Article  PubMed  Google Scholar 

  • Pinto DLP, Barros BA, Viccini LF, Campos JMS, Silva ML, Otoni WC (2010) Ploidy stability of somatic embryogenesis-derived Passiflora cincinnata Mast. plants as assessed by flow cytometry. Plant Cell Tissue Organ Cult 103:71–79

    Article  Google Scholar 

  • Pipino L, Braglia L, Giovannini A, Fascella G, Mercuri A (2008) In vitro regeneration of Passiflora species with ornamental value. Propag Ornam Plants 8:47–49

    Google Scholar 

  • Puricelli L, Dell′Aica I, Sartor L, Garbisa S, Caniato R (2003) Preliminary evaluation of inhibition of matrix-metalloproteins MMP-2 and MMP-9 by Passiflora edulis and P. foetida aqueous extracts. Fitoterapia 74:302–304

    Article  PubMed  CAS  Google Scholar 

  • Reis LB, Silva ML, Lima ABP, Oliveira MLP, Pinto DLP, Lani ERG, Otoni WC (2007) Agrobacterium rhizogenes-mediated transformation of passionfruit species: Passiflora cincinnata and P. edulis flavicarpa. Acta Hortic 738:425–431

    Google Scholar 

  • Shaik S, Singh N, Nicholas A (2011) HPLC and GC analyses of in vitro-grown leaves of the cancer bush Lessertia (Sutherlandia) frutescens L. reveal higher yields of bioreactive compounds. Plant Cell Tiss Organ Cult 105:431–438

    Article  CAS  Google Scholar 

  • Silva ML, Pinto DLP, Guerra MP, Floh EIS, Bruckner CH, Otoni WC (2009) A novel regeneration system for a wild passion fruit species (Passiflora cincinnata Mast.) based on somatic embryogenesis from mature zygotic embryos. Plant Cell Tiss Organ Cult 99:47–54

    Article  Google Scholar 

  • Singh S, Kuanar A, Mohanty S, Subudhi E, Nayak S (2011) Evaluation of phytomedicinal yield potential and molecular profiling of micropropagated and conventionally grown turmeric (Curcuma longa L.). Plant Cell Tiss Organ Cult 104:263–269

    Article  CAS  Google Scholar 

  • Socorro O, Tárrega I, Rivas F (1998) Essential oils from wild and micropropagated plants of Origanum bastetanum. Phytochemistry 48:1347–1349

    Article  CAS  Google Scholar 

  • Stancheva N, Weber J, Schulze J, Alipieva K, Ludwig-Müller J et al (2011) Phytochemical and flow cytometric analyses of Devil′s claw cell cultures. Plant Cell Tiss Organ Cult 105:79–84

    Article  CAS  Google Scholar 

  • Su YH, Zhang XS (2009) Auxin gradients trigger de novo formation of stem cells during somatic embryogenesis. Plant Signal Behav 4:574–576

    Article  PubMed  CAS  Google Scholar 

  • Traw MB, Dawson TE (2002) Differential induction of trichomes by three herbivores of black mustard. Oecologia 131:526–532

    Article  Google Scholar 

  • Ulmer T, MacDougal JM (2004) Passiflora, passion flowers of the world. Timber Press, Cambridge

    Google Scholar 

  • Wagner GJ (1991) Secreting glandular trichomes: more than just hairs. Plant Physiol 96:675–679

    Article  PubMed  CAS  Google Scholar 

  • Yang RH, Shetty K (1998) Stimulation of rosmarinic acid in shoot cultures of oregano (Origanum vulgare) clonal line in response to proline, proline analogue, and proline precursors. J Agric Food Chem 46:2888–2893

    Article  CAS  Google Scholar 

Download references

Acknowledgments

To Prof EW Kitajima and Prof F Tanaka for use of the electron microscope facility at NAP/MEPA-ESALQ/USP. To the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil), the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, São Paulo, Brazil) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Carnier Dornelas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosa, Y.B.C.J., Dornelas, M.C. In vitro plant regeneration and de novo differentiation of secretory trichomes in Passiflora foetida L. (Passifloraceae). Plant Cell Tiss Organ Cult 108, 91–99 (2012). https://doi.org/10.1007/s11240-011-0016-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-011-0016-6

Keywords

Navigation