Skip to main content
Log in

Plant regeneration in leaf culture of Centaurium erythraea Rafn. Part 2: the role of arabinogalactan proteins

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Arabinogalactan proteins (AGPs) are cell wall hydroxyproline-rich glycoproteins with diverse functions in plant growth and development. In this work the role of AGPs was comparatively studied in four developmental pathways that can be induced from centaury leaf explants—indirect somatic embryogenesis (ISE), indirect and direct shoot development (ISD and DSD) and direct root development (DRD). The addition of β-d-glucosyl Yariv (βGlcY) reagent, a synthetic phenylglycoside that specifically crosslinks AGPs, to the growth medium reduced the number of somatic embryos and adventitious buds formed per explant. The morphogenetic paths can be arranged in order of increasing sensitivity to βGlcY as: DRD (insensitive) < ISD < DSD ≪ ISE. The content of AGPs increased during all processes, but the accumulation of AGPs was the most rapid during ISE and when ISE and ISD occurred simultaneously. We have identified four centaury AGP transcripts, CeAGP1–CeAGP4, of which CeAGP1, 2 and 4 code for fasciclin-like AGPs. CeAGP3 is an AG peptide with conserved DUF1070 domain. Expression pattern of these genes indicated specific involvement of CeAGP1 in ISE and unspecific involvement of CeAGP3 in morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

ab:

Adventitious bud

AG:

Arabinogalactan

AGP:

Arabinogalactan protein

BM:

Basal medium

CPPU:

N-(2-chloro-4-pyridyl)-N′-phenylurea

CS:

Cleavage site

DRD:

Direct root development

DSE:

Direct somatic embryogenesis

DSD:

Direct shoot development

FLA:

Fasciclin-like AGPs

GPI:

Glycosylphosphatidylinositol anchor

GPIsp:

GPI-addition signal peptide

ISE:

Indirect somatic embryogenesis

ISD:

Indirect shoot development

LSD:

Least significant difference test

mAbs:

Monoclonal antibodies

qPCR:

Quantitative polymerase chain reaction

SE:

Somatic embryogenesis

SP:

Signal peptide

βGlcY:

β-d-Glucosyl Yariv reagent; 1,3,5-tris (4-β-d-glycopyranosyloxyphenylazo)-2,4,6-trihydroxybenzene

References

  • Bogdanović MD, Dragićević MB, Tanić NT, Todorović SI, Mišić DM, Živković ST, Tissier A, Simonović AD (2013) Reverse Transcription of 18S rRNA with Poly (dT) 18 and other Homopolymers. Plant Mol Biol Rep 31:55–63

    Article  Google Scholar 

  • Chapman A, Blervacq AS, Vasseur J, Hilbert JL (2000) Arabinogalactan-proteins in Cichorium somatic embryogenesis: effect of β-glucosyl Yariv reagent and epitope localisation during embryo development. Planta 211:305–314

    Article  CAS  PubMed  Google Scholar 

  • Ding L, Zhu JK (1997) A role for arabinogalactan-proteins in root epidermal cell expansion. Planta 203:289–294

    Article  CAS  PubMed  Google Scholar 

  • Eisenhaber B, Bork P, Eisenhaber F (1998) Sequence properties of GPI-anchored proteins near the omega-site: constraints for the polypeptide binding site of the putative transamidase. Protein Eng 11:1155–1161

    Article  CAS  PubMed  Google Scholar 

  • Eisenhaber B, Wildpaner M, Schultz CJ, Borner GHH, Dupree P, Eisenhaber F (2003) Glycosylphosphatidylinositol lipid anchoring of plant proteins. Sensitive prediction from sequence- and genome-wide studies for Arabidopsis and rice. Plant Physiol 133:1691–1701

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ellis M, Egelund J, Schultz CJ, Bačić A (2010) Arabinogalactan-proteins: key regulators at the cell surface? Plant Physiol 153:403–419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Faik A, Abouzouhair J, Sarhan F (2006) Putative fasciclin-like arabinogalactan-proteins (FLA) in wheat (Triticum aestivum) and rice (Oryza sativa): identification and bioinformatic analyses. Mol Genet Genomics 276:478–494

    Article  CAS  PubMed  Google Scholar 

  • Gao M, Showalter AM (2000) Immunolocalization of LeAGP-1, a modular arabinogalactan-protein, reveals its developmentally regulated expression in tomato. Planta 210:865–874

    Article  CAS  PubMed  Google Scholar 

  • Gaspar Y, Johnson KL, McKenna JA, Bačić A, Schultz CJ (2001) The complex structures of arabinogalactan-proteins and the journey towards understanding function. Plant Mol Biol 47:161–176

    Article  CAS  PubMed  Google Scholar 

  • Guan Y, Nothnagel EA (2004) Binding of arabinogalactan proteins by Yariv phenylglycoside triggers wound-like responses in Arabidopsis cell cultures. Plant Physiol 35:1346–1366

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hijazi M, Durand J, Pichereaux C, Pont F, Jamet E, Albenne C (2012) Characterization of the Arabinogalactan Protein 31 (AGP31) of Arabidopsis thaliana new advances on the hyp-o-glycosylation of the pro-rich domain. J Biol Chem 287:9623–9632

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang GQ, Xu WL, Gong SY, Li B, Wang XL, Xu D, Li XB (2008) Characterization of 19 novel cotton FLA genes and their expression profiling in fiber development and in response to phytohormones and salt stress. Physiol Plant 134:348–359

    Article  CAS  PubMed  Google Scholar 

  • Johnson KL, Jones BJ, Bačić A, Schultz CJ (2003) The fasciclin-like arabinogalactan proteins of Arabidopsis. A multigene family of putative cell adhesion molecules. Plant Physiol 133:1911–1925

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kawamoto T, Noshiro M, Shen M, Nakamasu K, Hashimoto K, Kawashima-Ohya Y, Gotoh O, Kato Y (1998) Structural and phylogenetic analyses of RGD-CAP/Î2ig-h3, a fasciclin-like adhesion protein expressed in chick chondrocytes. BBA-Gene Struct Expr 1395:288–292

    Article  CAS  Google Scholar 

  • Kim JE, Jeong HW, Nam JO, Lee BH, Choi JY, Park RW, Park JY, Kim IS (2002) Identification of motifs in the fasciclin domains of the transforming growth factor-β-induced matrix protein βig-h3 that interact with the αvβ5 integrin. J Biol Chem 277:46159–46165

    Article  CAS  PubMed  Google Scholar 

  • Kitazawa K, Tryfona T, Yoshimi Y, Hayashi Y, Kawauchi S, Antonov L, Tanaka H, Takahashi T, Kaneko S, Dupree P, Tsumuraya Y, Kotake T (2013) β-Galactosyl Yariv reagent binds to the β-1,3-galactan of arabinogalactan proteins. Plant Physiol 161:1117–1126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Konieczny R, Świerczyńska J, Czaplicki AZ, Bohdanowicz J (2007) Distribution of pectin and arabinogalactan protein epitopes during organogenesis from androgenic callus of wheat. Plant Cell Rep 26:355–363

    Article  CAS  PubMed  Google Scholar 

  • Kreuger M, van Holst GJ (1993) Arabinogalactan proteins are essential in somatic embryogenesis of Daucus carota L. Planta 189:243–248

    Article  CAS  Google Scholar 

  • Kreuger M, van Holst GJ (1995) Arabinogalactan-protein epitopes in somatic embryogenesis of Daucus carota L. Planta 197:135–141

    Article  CAS  Google Scholar 

  • Lafarguette F, Leplé JC, Déjardin A, Laurans F, Costa G, Lesage-Descauses MC, Pilate G (2004) Poplar genes encoding fasciclin-like arabinogalactan proteins are highly expressed in tension wood. New Phytol 164:107–121

    Article  CAS  Google Scholar 

  • Liu D, Tu L, Li Y, Wang L, Zhu L, Zhang X (2008) Genes encoding fasciclin-like arabinogalactan proteins are specifically expressed during cotton fiber development. Plant Mol Biol Rep 26:98–113

    Article  Google Scholar 

  • Lucau-Danila A, Laborde L, Legrand S, Huot L, Hot D, Lemoine Y, Hilbert JL, Hawkins S, Quillet MC, Hendriks T, Blervacq AS (2010) Identification of novel genes potentially involved in somatic embryogenesis in chicory (Cichorium intybus L.). BMC Plant Biol 10:122

    Article  PubMed Central  PubMed  Google Scholar 

  • Ma H, Zhao J (2010) Genome-wide identification, classification, and expression analysis of the arabinogalactan protein gene family in rice (Oryza sativa L.). J Exp Bot 61:2647–2668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Malkov S, Simonović A (2011) Shotgun assembly of Centaurium erythraea transcriptome. In: 19th Symposium of the Serbian plant physiology society, Book of abstracts, p 16

  • McCabe PF, Valentine TA, Forsberg LS, Pennell RI (1997) Soluble signals from cells identified at the cell wall establish a developmental pathway in carrot. Plant Cell Online 9:2225–2241

    Article  CAS  Google Scholar 

  • Motose H, Sugiyama M, Fukuda H (2004) A proteoglycan mediates inductive interaction during plant vascular development. Nature 429:873–878

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nam J, Mysore KS, Zheng C, Knue MK, Matthysse AG, Gelvin SB (1999) Identification of T-DNA tagged Arabidopsis mutants that are resistant to transformation by Agrobacterium. Mol Gen Genet 261:429–438

    Article  CAS  PubMed  Google Scholar 

  • Nguema-Ona E, Coimbra S, Vicré-Gibouin M, Mollet JC, Driouich A (2012) Arabinogalactan proteins in root and pollen-tube cells: distribution and functional aspects. Ann Bot 110:383–404

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Orbović V, Göllner EM, Soria P (2013) The effect of arabinogalactan proteins on regeneration potential of juvenile citrus explants used for genetic transformation by Agrobacterium tumefaciens. Acta Physiol Plant 35:1409–1419

    Article  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  CAS  PubMed  Google Scholar 

  • Piatczak E, Wysokinska H (2003) In vitro regeneration of Centaurium erythraea Rafn. from shoot tips and other seedling explants. Acta Soc Bot Pol 72:283–288

    Article  Google Scholar 

  • Pilarska M, Knox JP, Konieczny R (2013) Arabinogalactan-protein and pectin epitopes in relation to an extracellular matrix surface network and somatic embryogenesis and callogenesis in Trifolium nigrescens Viv. Plant Cell Tissue Organ 115:35–44

    Article  CAS  Google Scholar 

  • Poon S, Heath RL, Clarke AE (2012) A chimeric arabinogalactan protein promotes somatic embryogenesis in cotton cell culture. Plant Physiol 160:684–695

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saare-Surminski K, Preil W, Knox JP, Lieberei R (2000) Arabinogalactan proteins in embryogenic and non-embryogenic callus cultures of Euphorbia pulcherrima. Physiol Plant 108:180–187

    Article  CAS  Google Scholar 

  • Schultz C, Gilson P, Oxley D, Youl J, Bačić A (1998) GPI-anchors on arabinogalactan-proteins: implications for signalling in plants. Trends Plant Sci 3:426–431

    Article  Google Scholar 

  • Schultz CJ, Johnson KL, Currie G, Bačić A (2000) The classical arabinogalactan protein gene family of Arabidopsis. Plant Cell Online 12:1751–1767

    Article  CAS  Google Scholar 

  • Schultz CJ, Rumsewicz MP, Johnson KL, Jones BJ, Gaspar YM, Bačić A (2002) Using genomic resources to guide research directions. The arabinogalactan protein gene family as a test case. Plant Physiol 129:1448–1463

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seifert GJ, Roberts K (2007) The biology of arabinogalactan proteins. Annu Rev Plant Biol 58:137–161

    Article  CAS  PubMed  Google Scholar 

  • Serpe MD, Nothnagel EA (1994) Effects of Yariv phenylglycosides on Rosa cell suspensions: evidence for the involvement of arabinogalactan-proteins in cell proliferation. Planta 193:542–550

    Article  CAS  Google Scholar 

  • Showalter AM (2001) Arabinogalactan-proteins: structure, expression and function. Cell Mol Life Sci 58:1399–1417

    Article  CAS  PubMed  Google Scholar 

  • Showalter AM, Keppler BD, Lichtenberg J, Gu D, Welch LR (2010) A bioinformatics approach to the identification, classification, and analysis of hydroxyproline-rich glycoproteins. Plant Physiol 153:485–513

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539

    Article  PubMed Central  PubMed  Google Scholar 

  • Stacey NJ, Roberts K, Knox JP (1990) Patterns of expression of the JIM4 arabinogalactan-protein epitope in cell cultures and during somatic embryogenesis in Daucus carota L. Planta 180:285–292

    Article  CAS  PubMed  Google Scholar 

  • Steinmacher DA, Saare-Surminski K, Lieberei R (2012) Arabinogalactan proteins and the extracellular matrix surface network during peach palm somatic embryogenesis. Physiol Plant 146:336–349

    Article  CAS  PubMed  Google Scholar 

  • Subotić A, Grubišić D (2007) Histological analysis of somatic embryogenesis and adventitious shoot formation from root explants of Centaurium erythraea Gillib. Biol Plant 51:514–516

    Article  Google Scholar 

  • Sun W, Xu J, Yang J, Kieliszewski MJ, Showalter AM (2005) The lysine-rich arabinogalactan-protein subfamily in Arabidopsis: gene expression, glycoprotein purification and biochemical characterization. Plant Cell Physiol 46:975–984

    Article  CAS  PubMed  Google Scholar 

  • Tan L, Showalter AM, Egelund J, Hernandez-Sanchez A, Doblin MS, Bačić A (2012) Arabinogalactan-proteins and the research challenges for these enigmatic plant cell surface proteoglycans. Front Plant Sci 3:140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thompson HJ, Knox JP (1998) Stage-specific responses of embryogenic carrot cell suspension cultures to arabinogalactan protein-binding β-glucosyl Yariv reagent. Planta 205:32–38

    Article  CAS  Google Scholar 

  • Trifunović M, Tadić V, Petrić M, Jontulović D, Jevremović S, Subotić A (2014) Quantification of arabinogalactan proteins during in vitro morphogenesis induced by b-D glucosyl Yariv reagent in Centaurium erythraea root culture. Acta Physiol Plant 36:1187–1195

    Article  Google Scholar 

  • Van Hengel AJ, Van Kammen AB, De Vries SC (2002) A relationship between seed development, arabinogalactan-proteins (AGPs) and the AGP mediated promotion of somatic embryogenesis. Physiol Plant 114:637–644

    Article  PubMed  Google Scholar 

  • Van Holst GJ, Clarke AE (1985) Quantification of arabinogalactan-protein in plant extract by single radial diffusion. Ann Biochem 148:446–450

    Article  Google Scholar 

  • Van Holst GJ, Clarke AE (1986) Organ-specific arabinogalactan-proteins of Lycopersicon peruvianum (Mill.) demonstrated by crossed electrophoresis. Plant Physiol 80:786–789

    Article  PubMed Central  PubMed  Google Scholar 

  • Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ (2009) Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wiśniewska E, Majewska-Sawka A (2007) Arabinogalactan-proteins stimulate the organogenesis of guard cell protoplasts-derived callus in sugar beet. Plant Cell Rep 26:1457–1467

    Article  PubMed  Google Scholar 

  • Yariv J, Rapport MM, Graf L (1962) The interaction of glycosides and saccharides with antibody to the corresponding phenylazo glycosides. Biochem J 85:383–388

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yariv J, Lis H, Katchalski E (1967) Precipitation of arabic acid and some seed polysaccharides by glycosylphenylazo dyes. Biochem J 105:1C–2C

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the Serbian Ministry of Education, Science and Technological Development, Grants ON173024, ON173015 and ON174021. The authors thank Dr. Milan Dragićević for valuable discussions and critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milana M. Trifunović.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 77 kb)

Supplementary material 2 (DOC 328 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonović, A.D., Filipović, B.K., Trifunović, M.M. et al. Plant regeneration in leaf culture of Centaurium erythraea Rafn. Part 2: the role of arabinogalactan proteins. Plant Cell Tiss Organ Cult 121, 721–739 (2015). https://doi.org/10.1007/s11240-015-0741-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0741-3

Keywords

Navigation