Skip to main content
Log in

Chrysanthemum low-temperature storage and cryopreservation: a review

  • Review
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Chrysanthemum (Dendranthema × grandiflora (Ramat.) Kitamura) is an ornamental plant that responds well to in vitro growth conditions. This receptivity makes it a particularly attractive target for low-temperature storage and cryopreservation studies. This review examines in detail the protocols thus far used to achieve the short- to long-term low-temperature and cryostorage of important chrysanthemum germplasm. Occasionally, medicinal chrysanthemum species have also been cryostored, and these studies are also examined in detail. Since chrysanthemum is sensitive to both osmotic stress and chemical toxicity of vitrification solutions, a generalized protocol for the cryopreservation of chrysanthemum apical or axillary shoot tips is proposed: excision of apical or axillary shoot tips after 4 or 7 weeks, respectively, from final subculture; progressive preculture with 10 % sucrose for 31 h, 17.5 % sucrose for 17 h, then 25 % sucrose for 7 h; osmoprotection with 17.5 % glycerol + 17.5 % sucrose for 40 min; cryoprotection with PVS3 (50 % glycerol + 50 % sucrose) vitrification solution for 60 min (axillary) or 90 min (apical); cooling and warming using aluminium foil strips; unloading with 30 % sucrose for 40 min. When smaller axillary shoot tips are used, cryoprotection of samples with 37.5 % glycerol + 15 % DMSO + 15 % ethylene glycol + 22.5 % sucrose at 0 °C for about 60 min can be applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

EG:

Ethylene glycol

LN:

Liquid nitrogen

LNC:

Liquid nitrogen control (dehydrated control)

LS:

Loading solution

LTS:

Low-temperature storage

PVS2:

Plant vitrification solution 2

PVS3:

Plant vitrification solution 3

SIM:

Shoot induction medium

Synseed:

Synthetic seed

VS:

Vitrification solution

References

  • Ashmore SE (1997) Status report on the development and application of in vitro techniques for the conservation and use of plant genetic resources. IPGRI, Rome

    Google Scholar 

  • Bannier LJ, Steponkus PL (1972) Freeze preservation of callus cultures of Chrysanthemum morifolium Ramat. HortScience 7:194

    Google Scholar 

  • Budiarto K (2009) Alternative in vitro media for medium-term conservation of chrysanthemum (Dendranthema grandiflora Tvelve). Jurnal Bumi Lestari 9(1):48–53

    Google Scholar 

  • Engelmann F (2004) Plant cryopreservation: progress and prospects. In Vitro Cell Dev Biol Plant 40:427–433

    Article  Google Scholar 

  • Engelmann F (2011) Use of biotechnologies for the conservation of plant biodiversity. In Vitro Cell Dev Biol Plant 47:5–16

    Article  Google Scholar 

  • Engelmann F, Dussert S (2012) Cryopreservation. In: Normah MN, Chin HF, Reed BM (eds) Conservation of tropical plant species. Springer, Berlin, pp 107–120

    Google Scholar 

  • Fukai S (1990) Cryopreservation of chrysanthemum shoot tips. Sci Hortic 45:167–174

    Article  Google Scholar 

  • Fukai S (1992) Studies on the cryopreservation of shoot tips of Dianthus and Chrysanthemum. Mem Fac Agric Kagawa Univ 56:1–79

    Google Scholar 

  • Fukai S, Oe M (1990) Morphological observations of chrysanthemum shoot tips cultured after cryoprotection and freezing. J Jpn Soc Hortic Sci 59:383–387

    Article  Google Scholar 

  • Fukai S, Morii M, Oe M (1988) Storage of chrysanthemum (Dendranthema × grandiflora (Ramat.) Kitamura) plantlets in vitro. Plant Tissue Cult Lett 5(1):20–25 (in Japanese with English abstract)

  • Fukai S, Goi M, Tanaka M (1991) Cryopreservation of shoot tips of Chrysanthemum morifolium and related species native to Japan. Euphytica 54:201–204

    Google Scholar 

  • Fukai S, Goi M, Tanaka M (1994) The chimeric structure of the apical dome of chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitam.) is affected by cryopreservation. Sci Hortic 57:347–351

    Article  Google Scholar 

  • Gonzalez-Arnao MT, Engelmann F (2006) Cryopreservation of plant germplasm using the encapsulation–dehydration technique: review and case study on sugarcane. CryoLetters 27:155–168

    CAS  PubMed  Google Scholar 

  • Gusta LV, Trischuk R, Weiser CJ (2005) Plant cold acclimation: the role of abscisic acid. J Plant Growth Regul 24:308–318

    Article  CAS  Google Scholar 

  • Halmagyi A, Fischer-Klüver G, Mix-Wagner G, Schumacher HM (2004) Cryopreservation of Chrysanthemum morifolium (Dendranthema grandiflora Ramat.) using different approaches. Plant Cell Rep 22:371–375

    Article  CAS  PubMed  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hitmi A, Barthomeuf C, Sallanon H (1997) Cryopreservation of Chrysanthemum cinerariaefolium Vis. cells and its impact on their pyrethrin biosynthesis ability. Plant Cell Rep 17:60–64

    Article  CAS  Google Scholar 

  • Hitmi A, Barthomeuf C, Sallanon H (1999a) Cryopreservation of Chrysanthemum cinerariaefolium shoot tips. Effects of pretreatment conditions and retention of biosynthetic capacity. CryoLetters 20(2):113–120

    CAS  Google Scholar 

  • Hitmi A, Coudret A, Barthomeuf C, Sallanon H (1999b) The role of sucrose in freezing tolerance in Chrysanthemum cinerariaefolium L-cell cultures. CryoLetters 20(1):45–54

    CAS  Google Scholar 

  • Hitmi A, Barthomeuf C, Sallanon H (2000a) Cryopreservation of Chrysanthemum cinerariaefolium shoot tips. J Plant Physiol 156:408–412

    Article  CAS  Google Scholar 

  • Hitmi A, Coudret A, Barthomeuf C, Sallanon H (2000b) Role of intracellular water retention strength in freezing tolerance of Chrysanthemum cinerariaefolium Vis. cell cultures. J Plant Physiol 157:47–53

    Article  CAS  Google Scholar 

  • Kim HH, Lee SC (2012) Personalisation of droplet-vitrification protocols for plant species: a systematic approach to optimizing chemical and osmotic effects. CryoLetters 33(4):271–279

    CAS  PubMed  Google Scholar 

  • Kim HH, Lee YG, Park SU, Lee SC, Baek HJ, Cho EG, Engelmann F (2009a) Development of alternative loading solutions in droplet-vitrification procedures. CryoLetters 30(3):291–299

    CAS  PubMed  Google Scholar 

  • Kim HH, Lee YG, Shin DJ, Ko HC, Gwag JG, Cho EG, Engelmann F (2009b) Development of alternative plant vitrification solutions in droplet-vitrification procedures. CryoLetters 30(5):320–334

    CAS  PubMed  Google Scholar 

  • Lambardi M, Benelli C, Ozudogru EA, Ozden-Tokatli Y (2006) Synthetic seed technology in ornamental plants. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues, vol II, 1st edn. Global Science Books Ltd, Isleworth, pp 347–354

    Google Scholar 

  • Lee YG, Park SU, Kim HH (2011a) Cryopreservation of chrysanthemum shoot tips using the droplet-vitrification technique. CNU J Agric Sci 38(2):227–233

    CAS  Google Scholar 

  • Lee YG, Popov E, Cui HY, Kim HH, Park SU, Bae CH, Lee SC, Engelmann F (2011b) Improved cryopreservation of chrysanthemum (Chrysanthemum morifolium) using droplet-vitrification. CryoLetters 32(6):487–497

    CAS  PubMed  Google Scholar 

  • Liu Z, Gao SL (2010) The studies on germplasm conservation of Chrysanthemum cinerariifolium (Trev.) Vis. Pharma Biotechnol 17(3):237–239 (in Chinese with English abstract)

    Google Scholar 

  • Liu YX, Liu ZC, Lin T, Li TF, Cheng FD, Lee I, Luo LJ (2009) Study on cryopreservation of shoot-tips of chrysanthemum through vitrification. J Plant Genet Resour 10(2):249–254 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Mallon R, Bunn E, Turner SR, Gonzalez ML (2008) Cryopreservation of Centaurea ultreiae (Compositae) a critically endangered species from Galicia (Spain). CryoLetters 29:363–370

    CAS  PubMed  Google Scholar 

  • Martín C, González-Benito ME (2005) Survival and genetic stability of Dendranthema grandiflora Tzvelev shoot apices after cryopreservation by vitrification and encapsulation–dehydration. Cryobiology 51:281–289

    Article  PubMed  Google Scholar 

  • Martín C, Cervera MT, González-Benito ME (2011) Genetic stability analysis of chrysanthemum (Chrysanthemum × morifolium Ramat) after different stages of an encapsulation–dehydration cryopreservation protocol. J Plant Physiol 168:158–166

    Article  PubMed  Google Scholar 

  • Matsumoto T, Sakai A, Yamada K (1994) Cryopreservation of in vitro grown apical meristems of wasabi (Wasabia japonica) by vitrification and subsequent high plant regeneration. Plant Cell Rep 13:442–446

    Article  CAS  PubMed  Google Scholar 

  • Mazur P (1984) Freezing of living cells: mechanisms and applications. Am J Physiol 247:C125–C142 (Cell Physiol 16)

    CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Niino T, Yamamoto S, Fukui K, Castillo Martinez CR, Matsumoto T, Engelmann F (2013) Dehydration improves cryopreservation of mat rush (Juncus decipiens Nakai) basal stem buds on cryo-plates. CryoLetters 34:549–560

    CAS  PubMed  Google Scholar 

  • Nishizawa S, Sakai A, Amano Y, Matsuzawa T (1993) Cryopreservation of asparagus (Asparagus officinalis L.) embryogenic suspension cells and subsequent plant regeneration by the vitrification method. Plant Sci 88:67–73

    Article  Google Scholar 

  • Normah MN, Chin HF, Reed BM (2012) Conservation of tropical plant species. Springer, Berlin

    Google Scholar 

  • Osorio-Saenz A, Mascorro-Gallardo JO, Valle-Sandoval MDR, González-Arnao MT, Engelmann F (2011) Genetically engineered trehalose accumulation improves cryopreservation tolerance of chrysanthemum (Dendranthema grandiflorum Kitam.) shoot-tips. CryoLetters 32:477–486

    CAS  PubMed  Google Scholar 

  • Ozudogru EA, Previati A, Lambardi M (2010) In vitro conservation and cryopreservation of ornamental plants. In: Jain SM, Ochatt SJ (eds) Protocols for in vitro propagation of ornamental plants methods in molecular biology, vol 589. Humana Press, New York, pp 303–324

    Chapter  Google Scholar 

  • Panis B, Piette B, Swennen R (2005) Droplet vitrification of apical meristems: a cryopreservation protocol applicable to all Musaceae. Plant Sci 168:45–55

    Article  CAS  Google Scholar 

  • Pinker I, Abdel-Rahman SSA (2005) Artificial seeds for propagation of Dendranthema × grandiflora (Ramat.). Propag Ornam Plants 5:186–191

    Google Scholar 

  • Reed BM (2008) Plant cryopreservation: a practical guide. Springer, Berlin

    Book  Google Scholar 

  • Roxas NJL, Tashiro Y, Miyazaki S, Isshiki S, Takeshita A (1995) In vitro preservation of Higo chrysanthemum (Dendranthema × grandiflora (Ramat.) Kitamura). J Jpn Soc Hortic Sci 63:863–870

    Article  Google Scholar 

  • Sakai A, Engelmann F (2007) Vitrification, encapsulation–vitrification and droplet-vitrification: a review. CryoLetters 28:151–172

    CAS  PubMed  Google Scholar 

  • Sakai A, Kobayashi S, Oiyama I (1990) Cryopreservation of nucellar cells of naval orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep 9:30–33

    Article  CAS  PubMed  Google Scholar 

  • Sakai A, Matsumoto T, Hirai D, Niino T (2000) Newly-developed encapsulation–dehydration protocol for plant cryopreservation. CryoLetters 21:53–62

    PubMed  Google Scholar 

  • Sharma S, Shahzad A, Teixeira da Silva JA (2013) Synseed technology—a complete synthesis. Biotechnol Adv 31:186–207

    Article  CAS  PubMed  Google Scholar 

  • Shinoyama H, Anderson N, Furuta H, Mochizuki A, Nomura Y, Singh RP, Datta SK, Wang B-C, Teixeira da Silva JA (2006) Chrysanthemum biotechnology. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues, vol I, 1st edn. Global Science Books Ltd, Isleworth, pp 140–163

    Google Scholar 

  • Teixeira da Silva JA (2003a) Chrysanthemum: advances in tissue culture, postharvest technology, genetics and transgenic biotechnology. Biotechnol Adv 21:715–766

    Article  CAS  PubMed  Google Scholar 

  • Teixeira da Silva JA (2003b) Anthemideae: advances in tissue culture, genetics and transgenic biotechnology. Afr J Biotechnol 2:547–556

    CAS  Google Scholar 

  • Teixeira da Silva JA (2004a) Ornamental chrysanthemums: improvement by biotechnology. Plant Cell Tissue Organ Cult 79:1–18

    Article  Google Scholar 

  • Teixeira da Silva JA (2004b) Mining the essential oils of the Anthemideae: a review. Afr J Biotechnol 3:706–720

    CAS  Google Scholar 

  • Teixeira da Silva JA (2012) Is BA (6-benzyladenine) BAP (6-benzylaminopurine)? Asian Australas J Plant Sci Biotechnol 6((special Issue 1)):121–124

    Google Scholar 

  • Teixeira da Silva JA, Yonekura L, Kaganda J, Mookdasanit J, Nhut DT, Afach G (2005) Important secondary metabolites and essential oils of species within the Anthemideae (Asteraceae). J Herbs Spices Med Plants 11(1/2):1–46

    Article  Google Scholar 

  • Teixeira da Silva JA, Shinoyama H, Aida R, Matsushita Y, Raj SK, Chen F (2013) Chrysanthemum biotechnology: Quo vadis? Crit Rev Plant Sci 32:21–52

    Article  CAS  Google Scholar 

  • Trifunović M, Jevremović S, Nikolić M, Subotić A, Radojević LJ (2007) Micropropagation of chrysanthemum cultivars—effect of cold storage on plant regeneration in vitro. Acta Hortic 764:319–324

    Google Scholar 

  • Wang R-R, Gao X-X, Chen L, Huo L-Q, Li M-F, Wang Q-C (2014) Shoot recovery and genetic integrity of Chrysanthemum morifolium shoot tips following cryopreservation by droplet-vitrification. Sci Hortic 176:330–339

    Article  Google Scholar 

  • Withers LA, Engelmann F (1998) In vitro conservation of plant genetic resources. In: Altman A (ed) Biotechnology in agriculture. Marcel & Dekker Inc., New York, pp 57–88

    Google Scholar 

  • Yamamoto S, Rafique T, Priyantha WS, Fukui K, Matsumoto T, Niino T (2011) Development of a cryopreservation procedure using aluminium cryo-plates. CryoLetters 32(3):256–265

    CAS  PubMed  Google Scholar 

  • Yoon JW, Kim HH, Ko HC, Hwang HS, Hong ES, Cho EG, Engelmann F (2006) Cryopreservation of cultivated and wild potato varieties by droplet vitrification: effect of subculture of mother-plants and of preculture of shoot tips. CryoLetters 27(4):211–222

    PubMed  Google Scholar 

  • Zalewska M, Kulus D (2013) Cryopreservation of in vitro-grown shoot tips of chrysanthemum by encapsulation–dehydration. Folia Hortic 25:133–140

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Jinmei Zhang, National Genebank of CAAS, for providing relevant Chinese articles.

Conflict of interest

The authors declare no conflicts of interest, financial or other.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jaime A. Teixeira da Silva, Haenghoon Kim or Florent Engelmann.

Additional information

In memoriam: We dedicate this review to the legend of Prof. Akira Sakai, who passed away on October 5, 2013. Prof. Sakai advanced our knowledge on cryopreservation for plant tissues, including of chrysanthemum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teixeira da Silva, J.A., Kim, H. & Engelmann, F. Chrysanthemum low-temperature storage and cryopreservation: a review. Plant Cell Tiss Organ Cult 120, 423–440 (2015). https://doi.org/10.1007/s11240-014-0641-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0641-y

Keywords

Navigation