Skip to main content
Log in

Somatic embryogenesis and in vitro plantlet regeneration in Salicornia brachiata Roxb.

  • Research Note
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Salicornia brachiata Roxb. (Amaranthaceae) a leaf-less annual succulent halophyte, grows under extremely saline conditions and is an important resource for salt stress responsive genes. Here we report somatic embryogenesis and in vitro plantlet regeneration in S. brachiata for the first time. In vitro-grown seedlings were used as explants and 86.0 ± 1.7 % explants produced embryogenic callus on 0.75 % agar-gelled Murashige and Skoog’s (MS) medium containing 2.0 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-d) in 16 weeks. Somatic embryogenesis was achieved on MS medium supplemented with 0.25 mg l−1 2,4-d. On this medium sustained cell division and growth within the first 8 weeks resulted in the formation of cell aggregates in 73.65 ± 0.44 % cultures producing globular somatic embryos (SEs). Gradually these converted into heart, torpedo and cotyledonary shaped SEs following subsequent 16 weeks subculture on the same medium. Around 35 % SEs germinated on plant growth regulator free MS medium. The somatic seedlings were acclimatized on sterile soil with 40–45 % survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Abbreviations

2,4-d :

2,4-dichlorophenoxyacetic acid

IBA:

Indole-3-butyric acid

MS:

Murashige and Skoog

PGR:

Plant growth regulator

RT:

Room temperature

SFP:

Spectral flux photon

GMO:

Genetically modified organism

References

  • Chen AH, Yang JL, Niu YD, Yang CP, Liu GF, Yu CY, Li CH (2010) High-frequency somatic embryogenesis from germinated zygotic embryos of Schisandra chinensis and evaluation of the effects of medium strength, sucrose, GA3, and BA on somatic embryo development. Plant Cell Tissue Organ Cult 102:357–364

    Article  CAS  Google Scholar 

  • Choudhary K, Singh M, Rathore MS, Shekhawat NS (2009) Somatic embryogenesis and in vitro plant regeneration in moth bean [Vigna aconitifolia (Jacq.) Marechal]: a recalcitrant grain legume. Plant Biotechnol Rep 3:205–211

    Article  Google Scholar 

  • Eganathan P, Subramanian HMSR, Latha R, Rao CS (2006) Oil analysis in seeds of Salicornia brachiata. Ind Crops Prod 23:177–179

    Article  CAS  Google Scholar 

  • Fehér A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult 74:201–228

    Article  Google Scholar 

  • Fei SZ, Riordan T, Read P (2002) Stepwise decrease of 2,4-d and addition of BA in subculture medium stimulated shoot regeneration and somatic embryogenesis in buffalograss. Plant Cell Tissue Organ Cult 70:275–279

    Article  CAS  Google Scholar 

  • Ghosh PK, Reddy MP, Pandya JB, Patolia JS, Vaghela SM, Gandhi MR, Sanghvi RJ, Kumar VGS, Shah MT (2005) Preparation of nutrient rich salt of plant origin. US patent 6,929,809 B2 United States Patent and Trademark Office, Washington, 16 Aug 2005

  • Ghosh PK, Mody KH, Reddy MP, Patolia JS, Eswaran K,Shah RA,Barot BK, Gandhi MR, Mehta AR, Bhatt M, Reddy AVR (2007) Low sodium salt of botanic origin. US patent 7,208,189 B2 United States Patent and Trademark Office, Washington, 24 Apr 2007

  • Gohil RH, Pandya JB, Parmar DR (2008) Estimation of genetic variability in Salicornia (Salicornia brachiata Roxb). Legum Res 31(4):289–291

    Google Scholar 

  • Jha B, Agarwal PK, Reddy PS, Lal S, Sopory SK, Reddy MK (2009) Identification of salt-induced genes from Salicornia brachiata, an extreme halophyte through expressed sequence tags analysis. Genes Genet Syst 84:111–120

    Article  CAS  PubMed  Google Scholar 

  • Jingyan S, Weiming LI, Hanshuang Z, Junli Z, Xiaolin Y, Lian W (2009) Somatic embryogenesis and plant regeneration in glandless upland cotton (Gossypium hirsutum L.). Front Agric China 3(3):279–283

    Article  Google Scholar 

  • Joshi AJ (1986) Effects of seawater on amino acids and mineral ions composition in Salicornia brachiata Roxb. J Plant Physiol 123:497–502

    Article  CAS  Google Scholar 

  • Joshi M, Mishra A, Jha B (2012) NaCl plays a key role for in vitro micropropagation of Salicornia brachiata, an extreme halophyte. Ind Crops Prod 35(1):313–316

    Article  CAS  Google Scholar 

  • Lee CW, Glenn EP, O’Leary JW (1992) In vitro propagation of Salicornia bigelovii by shoot-tip cultures. Hort Sci 27:472

    CAS  Google Scholar 

  • Litz RE, Gray DJ (1995) Somatic embryogenesis for agricultural improvement. World J Microbiol Biotechnol 11:416–425

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–479

    Article  CAS  Google Scholar 

  • Raghavan V (2004) Role of 2,4-dichlorophenoxyacetic acid (2,4-d) in somatic embryogenesis on cultured zygotic embryos of arabidopsis: cell expansion, cell cycling, and morphogenesis during continuous exposure of embryos to 2,4-d. Am J Bot 91(11):1743–1756

    Article  CAS  PubMed  Google Scholar 

  • Rajalakshmi S, Parida A (2012) Halophytes as a source of genes for abiotic stress tolerance. J Plant Biochem Biotechnol 21:63–67

    Article  CAS  Google Scholar 

  • Rathod MR, Shethia BD, Pandya JB, Ghosh PK, Dodia PJ, Srivastava BS, Srivastava R, Srivastava A, Chaturvedi V, Vairmani M (2011) Antitubercular extracts of Salicornia brachiata. US patnet 7,989,004 B2 United States Patent and Trademark Office, Washington, 2 Aug 2011

  • Rathore MS, Chikara J, Shekhawat NS (2011a) Plantlet regeneration from callus cultures of selected genotype of Aloe vera L.–An ancient plant for modern herbal industries. Appl Biochem Biotechnol 163:860–868

    Article  CAS  PubMed  Google Scholar 

  • Rathore MS, Chikara J, Mastan SG, Rahman H, Anand KGV, Shekhawat NS (2011b) assessment of genetic stability and instability of tissue culture-propagated plantlets of Aloe vera L. by RAPD and ISSR markers. Appl Biochem Biotechnol 165:1356–1365

    Article  CAS  PubMed  Google Scholar 

  • Shi XL, Han HP, Shi WL, Li YX (2006) NaCl and TDZ are two key factors for the improvement of in vitro regeneration rate of Salicornia europaea L. J Integr Plant Biol 48(10):1185–1189

    Article  CAS  Google Scholar 

  • Stanley OD (2008) Bio prospecting marine halophyte Salicornia brachiata for medical importance and salt encrusted land development. J Coast Dev 11(2):62–69

    Google Scholar 

  • Ventura Y, Sagi M (2013) Halophyte crop cultivation: the case for Salicornia and Sarcocornia. Environ Exp Bot 92:144–153

    Article  Google Scholar 

  • Vibha JB, Choudhary K, Mangal Singh, Rathore MS, Shekhawat NS (2009) An efficient somatic embryogenesis system for velvet bean [Mucuna pruriens (L.) DC.]: a source of anti Parkinson’s drug. Plant Cell Tissue Organ Cult 99:319–325

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the financial support from CSIR, New Delhi, Govt. of India for establishment of tissue culture facilities. N. Paliwal is thankful to CSIR, New Delhi for financial assistance. CSIR-CSMCRI communication no. PRIS/155/2013.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mangal S. Rathore or Pradeep K. Agarwal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathore, M.S., Paliwal, N., Anand, K.G.V. et al. Somatic embryogenesis and in vitro plantlet regeneration in Salicornia brachiata Roxb.. Plant Cell Tiss Organ Cult 120, 355–360 (2015). https://doi.org/10.1007/s11240-014-0571-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0571-8

Keywords

Navigation