Skip to main content
Log in

Effect of strigolactones and auxins on growth and metabolite content of Sutherlandia frutescens (L.) R. Br. microplants in vitro

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The influence of strigolactones as hormones in plants is not fully characterised even though they are known to affect plant architecture, both above ground and in the roots. Using an in vitro system, the effects of the synthetic auxins 1-naphthalene acetic acid and indole-3-butyric acid (NAA and IBA) and synthetic strigolactones (GR24 and Nijmegen-1) were tested on microplant development of Sutherlandia frutescens, a leguminous medicinal plant native to South Africa. Considerable phytochemical variation in wild populations has led to the proposal of using micropropagation for this species. This will assist with domestication and provide plants with a more predictable chemistry for the phytopharmaceuticals industry. Nodal explants with an axillary bud were grown on Murashige and Skoog (Plant Physiol 15:473–497, 1962) medium [0.8 % (m/v) agar (pH 5.8), 3 % (m/v) sucrose and 0.1 g/L myo-inositol] supplemented with NAA, IBA, GR24 and Nijmegen-1, either singly or in combination. The amino acid profile and secondary metabolite pool was monitored using LC–MS-profiling. Treatment with NAA promoted mass shoot production, whilst a combination of NAA and Nijmegen-1 also positively influenced the accumulation of amino acids, flavonoids (sutherlandins) and terpenoids (sutherlandiosides) that S. frutescens produces. Since these compounds represent the presumed active compounds in this species and the biomarkers used in quality control assessment of S. frutescens tissues harvested for the pharmaceutical industry, this treatment holds promise for the commercial production of Sutherlandia extracts and herbal medications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GABA:

γ-Aminobutyric acid

IBA:

Indole-3-butyric acid

LC–MS:

Liquid chromatography–mass spectrometry

MS:

Murashige and Skoog (1962)

NAA:

1-Naphthalene acetic acid

SU1:

Sutherlandioside B

References

  • Albrecht CF, Stander MA, Grobbelaar MC, Colling J, Kossmann J, Hills PN, Makunga NP (2012) LC–MS-based metabolomics assists with quality assessment and traceability of wild and cultivated plants of Sutherlandia frutescens (Fabaceae). S Afr J Bot 82:33–45

    Article  CAS  Google Scholar 

  • Besserer A, Puech-Pagès V, Kiefer P, Gomez-Roldan V, Jaunneau A, Roy S, Portais JC, Roux C, Bécard G, Séjalon-Delmas N (2006) Strigolactones stimulate mycorrhizal fungi by activating mitochondria. PLoS Biol 4(e226):1239–1247

    CAS  Google Scholar 

  • Brewer PB, Dun EA, Ferguson BJ, Rameau C, Beveridge A (2009) Strigolactone acts downstream of auxin to regulate bud outgrowth in Pea and Arabidopsis. Plant Physiol 150:482–493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Campanoni P, Nick P (2005) Auxin-dependent cell division and cell elongation. 1-Naphthaleneacetic acid and 2,4-Dichlorophenoxyacetic acid activate different pathways. Plant Physiol 137:939–948

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chinkwo KA (2005) Sutherlandia frutescens extracts can induce apoptosis in cultured carcinoma cells. J Ethnopharmacol 98:163–170

    Article  PubMed  Google Scholar 

  • Cohen SA, Michaud DP (1993) Synthesis of a fluorescent derivatizing reagent, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate and its application for the analysis of hydrolysate amino acids via HPLC. Anal Biochem 211:279–287

    Article  CAS  PubMed  Google Scholar 

  • Colling J, Stander MA, Makunga NP (2010) Nitrogen supply and abiotic stress influence canavanine synthesis and the productivity of in vitro regenerated Sutherlandia frutescens microshoots. J Plant Physiol 167:1521–1524

    Article  CAS  PubMed  Google Scholar 

  • Edreva A (1996) Polyamines in plants. Bulg J Plant Physiol 22:73–101

    CAS  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Page’s V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Be′card G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194

    Article  CAS  PubMed  Google Scholar 

  • Hunter DC, Burritt DJ (2012) Polyamines of plant origin—an important dietary consideration for human health. In: Rao V (ed) Phytochemicals as nutraceuticals—global approaches to their role in nutrition and health. Tech, Croatia, pp 225–244

    Google Scholar 

  • Kapulnik Y, Resnick N, Mayzlish-Gati E, Kaplan Y, Wininger S, Hershenhorn J, Koltai H (2011a) Strigolactones interact with ethylene and auxin in regulating root-hair elongation in Arabidopsis. J Exp Bot 62:2915–2924

    Article  CAS  PubMed  Google Scholar 

  • Kapulnik Y, Delaux PM, Resnick N, Mayzlish-Gati E, Wininger S, Bhattacharya C, Séjalon-Delmas N, Combier JP, Bécard G, Belausov E, Beeckman T, Dor E, Hershenhorn J, Koltai H (2011b) Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta 233:209–213

    Article  CAS  PubMed  Google Scholar 

  • Kohlen W, Chamikhova T, Liu Q, Bours R, Domagalska MA, Beguerie S, Verstappen F, Leyser O, Bouwmeester H, Ruyter-Spira C (2011) Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol 155:974–987

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuznetsov VV, Shevyakova NI (2007) Polyamines and stress tolerance of plants. Plant Stress 1:50–71

    Google Scholar 

  • Latent5 (2012) LatentiX data analytical software, Version 2.11

  • Lazar G, Goodman HM (2006) MAX1, a regulator of the flavonoid pathway, controls vegetative axillary bud outgrowth in Arabidopsis. Proc Natl Acad Sci USA 103:472–476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matusova R, Rani K, Verstappen FWA, Franssen MCR, Beale MH, Bouwmeester HJ (2005) The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol 139:920–934

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mayzlish-Gati E, De-Cuyper C, Goormachtig S, Beeckman T, Vuylsteke M, Brewer PB, Beveridge CA, Yermiyahu U, Kaplan Y, Enzer Y, Wininger Sm Resnick N, Cohen M, Kapulnik Y, Koltai H (2012) Strigolactones are involved in root response to low phosphate conditions in Arabidopsis. Plant Physiol 160:1329–1341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mncwangi NP (2009) Metabolomic profiling of Sutherlandia frutescens (L.) R. Br. and S. microphylla Burch. Ex DC. MTech: Pharmaceutical Sciences Thesis. Tshwane University of Technology, Tshwane

  • Mncwangi NP, Viljoen AM (2012) Quantitative variation of amino acids in Sutherlandia frutescens (Cancer bush)—towards setting parameters for quality control. S Afr J Bot 82:46–52

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15:473–497

    Article  CAS  Google Scholar 

  • Normanly J, Slovin JP, Cohen JD (1995) Rethinking auxin biosynthesis and metabolism. Plant Physiol 107:323–329

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pluskal T, Castillo S, Villar-Briones A, Orešič M (2010) MZmine 2: modular framework for processing, visualizing, and analysing mass spectrometry-based molecular profile data. BMC Bioinf 11:395–401

    Article  Google Scholar 

  • Rai VK (2002) Role of amino acids in plant responses to stresses. Biol Plant 45:481–487

    Article  CAS  Google Scholar 

  • Ramakrishna A, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6:1720–1731

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rashotte AM, Poupart J, Waddell CS, Muday GK (2003) Transport of the two natural auxins, indole-3-butyric acid and indole-3-acetic acid, in Arabidopsis. Plant Physiol 133:761–772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosenthal GA (1977) The biological effects and mode of action of L-Canavanine, a structural analogue of l-Arginine. Q Rev Biol 52:155–178

    Article  CAS  PubMed  Google Scholar 

  • Ruyter-Spira C, Kohlen W, Charnikhova T, Van Zeijl A, Van Bezouwen L, De Ruijter N, Cardoso C, Lopez-Raez JA, Matusova R, Bours R, Verstappen F, Bouwmeester H (2011) Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant Physiol 155:721–734

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Skerman NB, Joubert AM, Cronjé MJ (2011) The apoptosis inducing effects of Sutherlandia spp. extracts on an oesophageal cancer cell line. J Ethnopharmacol 137:1250–1260

    Article  PubMed  Google Scholar 

  • Smith L (2002) A tutorial on principal components analysis. www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf

  • Stander A, Marais S, Stivaktas V, Vorster C, Albrecht C, Lottering ML, Joubert AM (2009) In vitro effects of Sutherlandia frutescens water extracts on cell numbers, morphology, cell cycle progression and cell death in a tumorigenic and non-tumorigenic epithelial breast cell line. J Ethnopharmacol 124:45–60

    Article  PubMed  Google Scholar 

  • StatSoft Inc (2007) STATISTICA (data analysis software system), version 8.0. www.statsoft.com

  • Tai J, Cheung S, Chan E, Hasman D (2004) In vitro culture studies of Sutherlandia frutescens on human tumor cell lines. J Ethnopharmacol 93:9–19

    Article  PubMed  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasuk K, Yoneyama K, Kyozuka J (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–201

    Article  CAS  PubMed  Google Scholar 

  • Van Wyk BE, Albrecht C (2008) A review of the taxonomy, ethnobotany, chemistry and pharmacology of Sutherlandia frutescens (Fabaceae). J Ethnopharmacol 119:620–629

    Article  PubMed  Google Scholar 

  • Vogel JT, Walter MH, Giavalisco P, Lytovchenko A, Kohlen W, Charnikhova T, Simkin AJ, Goulet C, Strack D, Bouwmeester HJ, Fernie AR, Klee HJ (2010) SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato. Plant J 61:300–311

    Article  CAS  PubMed  Google Scholar 

  • Wigchert SCM, Kuiper E, Boelhouwer GJ, Nefkens GHL, Verkleij JAC, Zwanenburg B (1999) Dose-response of seeds of the parasitic weeds Striga and Orobanche toward the synthetic germination stimulants GR 24 and Nijmegen-1. J Agric Food Chem 47:1705–1710

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Law DM, Davies PJ (1993) Magnitude and kinetics of stem elongation induced by exogenous indole-3-acetic acid in intact light-grown pea seedlings. Plant Physiol 102:717–724

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoneyama K, Xie X, Kim HI, Kisugi T, Nomura T, Sekimoto H, Yokota T, Yoneyama K (2012) How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta 235:1197–1207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nokwanda P. Makunga or Paul N. Hills.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11240_2014_449_MOESM1_ESM.ppt

Suppl. Fig. 1 a Amino acid content per gram dry weight of leaf and stem explant material; b total per treatment. Log scaling is used to view amino acids that are found at low levels. Strigolactones GR24 and Nijmegen-1 (NM-1) were added at 0.1 μM each, whilst NAA was added at 1 mg/L (5.4 μM). Asterisks indicate significant differences in amino acid content compared to control of specific amino acid. Data are mean ± SE; N = 5. GABA - γ-aminobutyric acid (PPT 234 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grobbelaar, M.C., Makunga, N.P., Stander, M.A. et al. Effect of strigolactones and auxins on growth and metabolite content of Sutherlandia frutescens (L.) R. Br. microplants in vitro. Plant Cell Tiss Organ Cult 117, 401–409 (2014). https://doi.org/10.1007/s11240-014-0449-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0449-9

Keywords

Navigation