Skip to main content
Log in

Signal regulation of proline metabolism in callus of the halophyte Nitraria tangutorum Bobr. grown under salinity stress

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Callus of the halophyte Nitraria tangutorum Bobr. was used to investigate proline metabolism and its signal regulation under salinity stress. Enhanced levels of proline and hydrogen peroxide (H2O2) were observed in calli exposed to salinity stress, and elevated levels of calcium (Ca) were detected in early responses to 75 mM NaCl treatment. Additionally, NaCl treatment induced significant elevation of ornithine-δ-aminotransferase (OAT) activity, but notable decreases occurred in the activities of glutamyl kinase (GK) and proline dehydrogenase (PDH). H2O2 scavenger dimethylthiourea and pyruvate inhibited the accumulation of proline and the stimulation of OAT in salinity-stressed calli. Moreover, the utilization of Ca chelator EGTA and Ca channel blocker verapamil abolished the enhancement of proline level induced by 75 mM NaCl treatment for 3 days. These results suggest that the accumulation of proline is correlated to the increase of OAT activity and the decrease of PDH activity in response to salinity, and that elevated Ca signal during the early stage of NaCl treatment and the excitation of OAT activity resulting from the increase of H2O2 generation are essential for proline accumulation in salinity-stressed calli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

Ca:

Calcium

DMTU:

Dimethylthiourea

GK:

Glutamyl kinase

EDTA:

Ethylenediamine tetraacetic acid

EGTA:

Ethylene glycol bis-(beta-aminoethyl ether)-N,N,N′,N′-tetra-acetic acid

H2O2 :

Hydrogen peroxide

MS:

Murashige and Skoog

OAT:

Ornithine δ-aminotransferase

PDH:

Proline dehydrogenase

References

  • Ashour NI, Mekki BB (2006) Halophytic forage plants in response to irrigation with diluted seawater. World J Agric Sci 2:169–173

    Google Scholar 

  • Ashraf M (1989) The effect of NaCl on water relations, chlorophyll and protein and proline contents of two cultivars of blackgram (Vigna mungo L.). Plant Soil 119:205–210

    Article  CAS  Google Scholar 

  • Azzedine F, Gherroucha H, Baka M (2011) Improvement of salt tolerance in durum wheat by ascorbic acid application. J Stress Physiol Biochem 7:27–37

    Google Scholar 

  • Banu MNA, Hoque MA, Watanabe-Sugimoto M, Matsuoka K, Nakamura Y, Shimoishi Y, Murata Y (2009) Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress. J Plant Physiol 166:146–156

    Article  PubMed  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cha-um S, Singh HP, Samphumphuang T, Kirdmanee C (2012) Calcium-alleviated salt tolerance in indica rice (Oryza sativa L. spp. indica): physiological and morphological changes. Aust J Crop Sci 6:176–182

    CAS  Google Scholar 

  • Chen M, Wei H, Cao J, Liu R, Wang Y, Zheng C (2007) Expression of bacillus subtilis proBA genes and reduction of feedback inhibition of proline synthesis increases proline production and confers osmotolerance in transgenic Arabidopsis. J Biochem Mol Biol 40:396–403

    Article  PubMed  CAS  Google Scholar 

  • Colmer TD, Fan TWM, Higashi RM, Lauchli A (1996) Interactive effects of Ca2+ and NaCl salinity on the ionic relations and proline accumulation in the primary root tip of Sorghum bicolor. Physiol Plant 97:421–424

    Article  CAS  Google Scholar 

  • Du NX, Li X, Li Y, Chen SY, Zhang JS, Ha D, Deng WG, Sun CK, Zhang YZ, Pijut PM (2012) Genetic transformation of Populus tomentosa to improve salt tolerance. Plant Cell Tiss Organ Cult 108:181–189

    Article  CAS  Google Scholar 

  • Forman HJ (2007) Use and abuse of exogenous H2O2 in studies of signal transduction. Free Radical Biol Med 42:926–932

    Article  CAS  Google Scholar 

  • Funck D, Stadelhofer B, Koch W (2008) Ornithine-δ-aminotransferase is essential for arginine catabolism but not for proline biosynthesis. BMC Plant Biol 8:40

    Article  PubMed  Google Scholar 

  • Gao D, Knight MR, Trewavas AJ, Sattelmacher B, Plieth C (2004) Self-reporting Arabidopsis expressing pH and [Ca2+] indicators unveil ion dynamics in the cytoplasm and in the apoplast under abiotic stress. Plant Physiol 134:898–908

    Article  PubMed  CAS  Google Scholar 

  • Gleeson D, Lelu-Walter MA, Parkinson M (2005) Overproduction of proline in transgenic hybrid larch (Larixx leptoeuropaea (Dengler)) cultures renders them tolerant to cold, salt and frost. Mol Breeding 15:21–29

    Article  CAS  Google Scholar 

  • Halperin SJ, Kochian LV, Lynch JP (1997) Salinity stress inhibits calcium loading into the xylem of excised barley (Hordeum vulgare) roots. New Phytol 135:419–427

    Article  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Biol 51:463–499

    Article  CAS  Google Scholar 

  • Kavi Kishor PB, Sangam S, Amrutha RN, Laxmi PS, Naidu KR, Rao K, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    Google Scholar 

  • Kim HR, Rho HW, Park JW, Park BH, Kim JS, Lee MW (1994) Assay of ornithine aminotransferase with ninhydrin. Anal Biochem 223:205–207

    Article  PubMed  CAS  Google Scholar 

  • Krell A, Funck D, Plettner I, John U, Dieckmann G (2007) Regulation of proline metabolism under salt stress in the psychrophilic diatom Fragilariopsis cylindrus (Bacillariophyceae). J Phycol 43:753–762

    Article  CAS  Google Scholar 

  • Kumar SG, Reddy AM, Sudhakar C (2003) NaCl effects on proline metabolism in two high yielding genotypes of mulberry (Morus alba L.) with contrasting salt tolerance. Plant Sci 165:1245–1251

    Article  CAS  Google Scholar 

  • Lee TM, Liu CH (1999) Correlation of decreased calcium contents with proline accumulation in the marine green macroalga Ulva fasciata exposed to elevated NaCl contents in seawater. J Exp Bot 50:1855–1862

    CAS  Google Scholar 

  • Lokhande VH, Nikam TD, Penna S (2010) Biochemical, physiological and growth changes in response to salinity in callus cultures of Sesuvium portulacastrum L. Plant Cell Tiss Organ Cult 102:17–25

    Article  Google Scholar 

  • Lutts S, Majerus V, Kinet JM (1999) NaCl effects on proline metabolism in rice (Oryza sativa) seedlings. Physiol Plant 105:450–458

    Article  CAS  Google Scholar 

  • Lv WT, Lin B, Zhang M, Hua XJ (2011) Proline accumulation is inhibitory to Arabidopsis seedlings during heat stress. Plant Physiol 156:1921–1933

    Article  PubMed  CAS  Google Scholar 

  • Madan S, Nainawatee HS, Jain RK, Chowdhury JB (1995) Proline and proline metabolising enzymes in in vitro selected NaCl-tolerant Brassica juncea L. under salt stress. Ann Bot 76:51–57

    Article  CAS  Google Scholar 

  • Megdiche W, Amor NB, Debez A, Hessini K, Ksouri R, Zuily-Fodil Y, Abdelly C (2007) Salt tolerance of the annual halophyte Cakile maritima as affected by the provenance and the developmental stage. Acta Physiol Plant 29:375–384

    Article  CAS  Google Scholar 

  • Misra N, Gupta AK (2005) Effect of salt stress on proline metabolism in two high yielding genotypes of green gram. Plant Sci 169:331–339

    Article  CAS  Google Scholar 

  • Ozden M, Demirel U, Kahraman A (2009) Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. Scientia Hort 119:163–168

    Article  CAS  Google Scholar 

  • Parre E, Ghars MA, Leprince AS, Thiery L, Lefebvre D, Bordenave M, Richard L, Mazars C, Abdelly C, Savoure A (2007) Calcium signaling via phospholipase C is essential for proline accumulation upon ionic but not nonionic hyperosmotic stresses in Arabidopsis. Plant Physiol 144:503–512

    Article  PubMed  CAS  Google Scholar 

  • Patterson JH, Newbigin E, Tester M, Bacic A, Roessner U (2009) Metabolic responses to salt stress are described for two barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differed in salinity. J Exp Bot 60:4089–4103

    Article  PubMed  Google Scholar 

  • Pei ZF, Ming DF, Liu D, Wan GL, Geng XX, Gong HJ, Zhou WJ (2010) Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. J Plant Growth Regul 29:106–115

    Article  CAS  Google Scholar 

  • Perez-Alfocea F, Balibrea ME, Cruz AS, Estan MT (1996) Agronomical and physiological characterization of salinity tolerance in a commercial tomato hybrid. Plant Soil 180:251–257

    Article  CAS  Google Scholar 

  • Rena AB, Splittstoesser WE (1975) Proline dehydrogenase and pyrroline-5-carboxylate reductase from pumpkin cotyledons. Phytochem 14:657–661

    Article  CAS  Google Scholar 

  • Renault S, Affifi M (2009) Improving NaCl resistance of red-osier dogwood: role of CaCl2 and CaSO4. Plant Soil 315:123–133

    Article  CAS  Google Scholar 

  • Roosens NH, Willem R, Li Y, Verbruggen II, Biesemans M, Jacobs M (1999) Proline metabolism in the wild-type and in a salt tolerant mutant of Nicotiana plumbaginifolia studied by 13C-nuclear magnetic resonance imaging. Plant Physiol 121:1281–1290

    Article  PubMed  CAS  Google Scholar 

  • Savoure A, Hua XJ, Bertauche N, Montagu MV, Verbruggen N (1997) Abscisic acid-independent and abscisic acid-dependent regulation of proline biosynthesis following cold and osmotic stresses in Arabidopsis thaliana. Mol Gen Genet 254:104–109

    Article  PubMed  CAS  Google Scholar 

  • Sekmen AH, Turkan I, Tanyolac ZO, Ozfidan C, Dinc A (2012) Different antioxidant defense responses to salt stress during germination and vegetative stages of endemic halophyte Gypsophila oblanceolata Bark. Environ Exp Bot 77:63–76

    Article  CAS  Google Scholar 

  • Sergiev I, Alexieva V, Karanov E (1997) Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Compt Rend Acad Bulg Sci 51:121–124

    Google Scholar 

  • Simova-Stoilova L, Demirevska K, Petrova T, Tsenov N, Feller U (2008) Antioxidative protection in wheat varieties under severe recoverable drought at seedling stage. Plant Soil Environ 54:529–536

    CAS  Google Scholar 

  • Smith CJ, Deutch AH, Rushlow KE (1984) Purification and characteristics of a γ-glutamyl kinase involved in Escherichia coli proline biosynthesis. J Bacteriol 157:545–551

    PubMed  CAS  Google Scholar 

  • Song WY, Zhang ZB, Shao HB, Guo XL, Cao HX, Zhao HB, Fu ZY, Hu XJ (2008) Relationship between calcium decoding elements and plant abiotic-stress resistance. Int J Biol Sci 4:116–125

    Article  PubMed  CAS  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  PubMed  CAS  Google Scholar 

  • Thiery L, Leprince AS, Lefebvre D, Ghars MA, Debarbieux E, Savouré A (2004) Phospholipase D is a negative regulator of proline biosynthesis in Arabidopsis thaliana. J Biol Chem 279:14812–14818

    Article  PubMed  CAS  Google Scholar 

  • Vázquez MD, Poschenrieder C, Corrales I, Barceló J (1999) Change in apoplastic aluminum during the initial growth response to aluminum by roots of a tolerant maize variety. Plant Physiol 119:435–444

    Article  PubMed  Google Scholar 

  • Wang K, Liu Y, Dong K, Dong J, Kang J, Yang Q, Zhou H, Sun Y (2011) The effect of NaCl on proline metabolism in Saussurea amara seedlings. Afr J Biotechnol 10:2886–2893

    CAS  Google Scholar 

  • White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511

    Article  PubMed  CAS  Google Scholar 

  • Widholm JM (1988) In vitro selection with plant cell and tissue cultures. Iowa State J Res 62:587–595

    Google Scholar 

  • Wu Z, Liang F, Hong B, Young JC, Sussman MR, Harper JF, Sze H (2002) An endoplasmic reticulum-bound Ca2+/Mn2+ pump, ECA1, supports plant growth and confers tolerance to Mn2+ stress. Plant Physiol 130:128–137

    Article  PubMed  CAS  Google Scholar 

  • Yang YL, Xu SJ, An LZ, Chen NL (2007) NADPH oxidase-dependent hydrogen peroxide production, induced by salinity stress, may be involved in the regulation of total calcium in roots of wheat. J Plant Physiol 164:1429–1435

    Article  PubMed  CAS  Google Scholar 

  • Yang SL, Lan SS, Gong M (2009) Hydrogen peroxide-induced proline and metabolic pathway of its accumulation in maize seedlings. J Plant Physiol 166:1694–1699

    Article  PubMed  CAS  Google Scholar 

  • Yang YL, Wei XL, Shi RX, Fan Q, An LZ (2010a) Salinity-induced physiological modification in the callus from halophyte Nitraria tangutorum Bobr. J Plant Growth Regul 29:477–486

    Article  Google Scholar 

  • Yang YL, Shi RX, Wei XL, Fan Q, An LZ (2010b) Effect of salinity on antioxidant enzymes in calli of the halophyte Nitraria tangutorum Bobr. Plant Cell Tiss Organ Cult 102:387–395

    Article  CAS  Google Scholar 

  • Zhao X, Tan HJ, Liu YB, Li XR, Chen GX (2009) Effect of salt stress on growth and osmotic regulation in Thellungiella and Arabidopsis callus. Plant Cell Tiss Organ Cult 98:97–103

    Article  CAS  Google Scholar 

  • Zhen WB, Ma QH (2009) Proline metabolism in response to salt stress in common reed [Phragmites australis (Cav.) Trin. ex Steud]. Bot Marina 52:307–315

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 31160088 and 30960064) and Program for New Century Excellent Talents in University of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingli Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Yang, F., Li, X. et al. Signal regulation of proline metabolism in callus of the halophyte Nitraria tangutorum Bobr. grown under salinity stress. Plant Cell Tiss Organ Cult 112, 33–42 (2013). https://doi.org/10.1007/s11240-012-0209-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-012-0209-7

Keywords

Navigation