Skip to main content
Log in

Expression of CoQ10-producing ddsA transgene by efficient Agrobacterium-mediated transformation in Panicum meyerianum

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Panicum meyerianum Nees is a wild relative of Panicum maximum Jacq. (guinea grass), which is an important warm-season forage grass and biomass crop. We investigated the conditions that maximized the transformation efficiency of P. meyerianum by Agrobacterium infection by monitoring the expression of the β-glucuronidase (GUS) gene. The highest activities of GUS in calli were achieved by the co-cultivation of plants with Agrobacterium at 28°C for 6 days. We transferred the ddsA gene, which encodes decaprenyl diphosphate synthase and is required for coenzyme Q10 (CoQ10) synthesis, into P. meyerianum by using our optimized co-cultivation procedure for transformation. We confirmed by PCR and DNA gel blot hybridization that all hygromycin-resistant plants retained stable insertion of the hpt and ddsA genes. We also demonstrated strong expression of S14:DdsA protein in the leaves of transgenic P. meyerianum. Furthermore, we showed that transgenic P. meyerianum produced CoQ10 at levels 11–20 times higher than that of non-transformants. By comparison, the CoQ9 level in transgenic plants was dramatically reduced. This is the first report of efficient Agrobacterium-mediated transfer of a foreign gene into the warm-season grass P. meyerianum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GUS:

β-glucuronidase

ddsA :

Decaprenyl diphosphate synthase gene

CoQ:

Coenzyme Q

hpt :

Hygromycin phosphotransferase gene

PCR:

Polymerase chain reaction

References

  • Blanc G, Baptiste C, Oliver G, Martin F, Montoro P (2006) Efficient Agrobacterium tumefaciens-mediated transformation of embryogenic calli and regeneration of Hevea brasiliensis Müll Arg. plants. Plant Cell Rep 24:724–733

    Article  PubMed  CAS  Google Scholar 

  • Cao D, Hou W, Song S, Sun H, Wu C, Gao Y, Han T (2009) Assessment of conditions affecting Agrobacterium rhizogenes-mediated transformation of soybean. Plant Cell Tissue Organ Cult 96:45–52

    Article  Google Scholar 

  • Claudiu M, Ana P, Machado R, Marcia MP, Gilberto SM, Elisabeth M (2000) Establishment of an efficient Agrobacterium-mediated transformation system for eggplant and study of a potential biotechnologically useful promoter. J Plant Biotechnol 2:43–49

    Google Scholar 

  • Dillen W, Clercq JD, Kapila J, Zambre M, Montagu MV, Angenon G (1997) The effect of temperature on Agrobacterium tumefaciens-mediated gene transfer to plants. Plant J 12:1459–1463

    Article  CAS  Google Scholar 

  • Emani CJM, Garcia ELF, Pozo MJ, Uribe P, Kim DJ, Sunikumar G, Cook DR, Kenerley CM, Rathore KS (2003) Enhanced fungal resistance in transgenic cotton expressing an endochitinase gene from Trichoderma virens. Plant Biotechnol J 1:321–336

    Article  PubMed  CAS  Google Scholar 

  • Espasandin FD, Collavino MM, Luna CV, Paz RC, Tarragó JR, Ruiz OA, Mroginski LA, Sansberro PA (2010) Agrobacterium tumefaciens-mediated transformation of Lotus tenuis and regeneration of transgenic lines. Plant Cell Tissue Organ Cult 102:181–189

    Article  CAS  Google Scholar 

  • Glowacka K, Ježowski S, Kaczmarek Z (2010) The effects of genotype, inflorescence developmental stage and induction medium on callus induction and plant regeneration in two Miscanthus species. Plant Cell Tissue Organ Cult 102:79–86

    Article  Google Scholar 

  • Goldman JJ, Hanna WW, Fleming GH, Ozias-Akins P (2004) Ploidy variation among herbicide-resistant bermudagrass plants of cv. TifEagle transformed with the bar gene. Plant Cell Rep 22:553–560

    Article  PubMed  CAS  Google Scholar 

  • Gondo T, Tsuruta S, Akashi R, Kawanura O, Hoffmann F (2005) Green, herbicide-resistant plants by particle inflow gun-mediated gene transfer to diploid bahiagrass (Paspalum notatum). J Plant Physiol 162:1367–1375

    Article  PubMed  CAS  Google Scholar 

  • Gondo T, Matsumoto J, Tsuruta S, Yoshida M, Kawakami A, Terami F, Ebina M, Yamada T, Akashi R (2009) Particle inflow gun-mediated transformation of multiple-shoot clumps in rhodes grass (Chloris gayana). J Plant Physiol 166:435–441

    Article  PubMed  CAS  Google Scholar 

  • Haberl H, Geissler S (2000) Cascade utilization of biomass: strategies for a more efficient use of a scarce resource. Ecol Eng 16:S111–S121

    Article  Google Scholar 

  • Jonassen T, Larsen PL, Clarke CF (2001) A dietary source of coenzyme Q is essential for growth of long-lived Caenorhabditis elegans clk-1 mutants. Proc Natl Acad Sci USA 98:421–426

    Article  PubMed  CAS  Google Scholar 

  • Kawamukai M (2009) Biosynthesis and bioproduction of coenzyme Q10 by yeasts and other organisms. Biotechnol Appl Biochem 53:217–226

    Article  PubMed  CAS  Google Scholar 

  • Kohli A, Melendi PG, Abranches R, Capell T, Stoger E, Christou P (2006) The Quest to understand the basis and mechanisms that control expression of introduced transgenes in crop plants. Plant Signal Behav 1:185–195

    Article  PubMed  Google Scholar 

  • Kosugi S, Ohashi Y, Nakajima K, Arai Y (1990) An improved assay for p-glucuronidase in transformed cells: methanol almost completely suppresses a putative endogenous o-glucuronidase activity. Plant Sci 70:133–140

    Article  CAS  Google Scholar 

  • Li L, Li R, Fei S, Qu R (2005) Agrobacterium-mediated transformation of common bermudagrass (Cynodon dactylon). Plant Cell Tissue Organ Cult 83:223–229

    Article  Google Scholar 

  • Li X, Ahlman A, Yan X, Lindgren H, Zhu L (2010) Genetic transformation of the oilseed crop Crambe abyssinica. Plant Cell Tissue Organ Cult 100:149–156

    Article  CAS  Google Scholar 

  • Liu SJ, Wei ZM, Huang JQ (2008) The effect of co-cultivation and selection parameters on Agrobacterium-mediated transformation of Chinese soybean varieties. Plant Cell Rep 27:489–498

    Article  PubMed  CAS  Google Scholar 

  • Matzke AJM, Matzke MA (1998) Position effects and epigenetic silencing of plant transgenes. Curr Opin Plant Biol 1:142–148

    Article  PubMed  CAS  Google Scholar 

  • Matzke AJM, Neuhuber F, Park YD, Ambros PF, Matzke MA (1994) Homology-dependent gene silencing in transgenic plants: epistatic silencing loci contain multiple copies of methylated transgenes. Mol Gen Genet 244:219–229

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakajima K, Mochizuki N (1983) Degrees of sexuality in sexual plants of guineagrass by the simplified embryo sac analysis. Jp J Breed 33:45–54

    Google Scholar 

  • Okada K, Kainou T, Tanaka K, Nakagawa T, Matsuda H, Kawamukai M (1998) Molecular cloning and mutational analysis of the ddsA gene encoding decaprenyl diphosphate synthase from Gluconobacter suboxydans. Eur J Biochem 255:52–59

    Article  PubMed  CAS  Google Scholar 

  • Okada K, Ohara K, Yazaki K, Nozaki K, Uchida N, Kawamukai M, Nojiri H, Yamane H (2004) The AtPPT1 gene encoding 4-hydroxybenzoate polyprenyl diphosphate transferase in ubiquinone biosynthesis is required for embryo development in Arabidopsis thaliana. Plant Mol Biol 55:567–577

    Article  PubMed  CAS  Google Scholar 

  • Panaia M, Bunn E, Turner SR, McComb J (2009) Incubation temperature critical to successful stimulation of in vitro zygotic embryo growth in four Australian native Cyperaceae species. Plant Cell Tissue Organ Cult 97:197–202

    Article  Google Scholar 

  • Salas MG, Park SH, Srivatanakul M, Smith RH (2001) Temperature influence on stable T-DNA integration in plant cells. Plant Cell Rep 20:701–705

    Article  CAS  Google Scholar 

  • Sanderson M, Reed R, McLaughlin S, Wullschleger S, Conger B, Parrish D, Wolf D, Taliaferro C, Hopkins A, Ocumpaugh W, Hussey M, Read J, Tischler C (1996) Switchgrass as a sustainable bioenergy source. Bioresour Technol 56:83–93

    Article  CAS  Google Scholar 

  • Seo MS, Takahara M, Ebina M, Takamizo T (2008) Evaluation of tissue culture response from mature seeds of Panicum spp. Grassl Sci 54:125–130

    Article  Google Scholar 

  • Seo MS, Takahara M, Takamizo T (2010) Optimization of culture condition for plant regeneration of Panicum spp. through somatic embryogenesis. Grassl Sci 56:1–7

    Article  Google Scholar 

  • Sharma M, Chajer AK, Chugh SJ, Kothari SL (2011) Factors influencing Agrobacterium tumefaciens-mediated genetic transformation of Eleusine coracana (L.) Gaertn. Plant Cell Tissue Organ Cult 105:93–104

    Article  CAS  Google Scholar 

  • Somleva M, Tomaszewski Z, Conger B (2002) Agrobacterium-mediated genetic transformation of switchgrass. Crop Sci 42:2080–2087

    Article  CAS  Google Scholar 

  • Takahashi S, Ogiyama Y, Kusano H, Shimada H, Kawamukai M, Kadowaki K (2006) Metabolic engineering of coenzyme Q by modification of isoprenoid side chain in plant. FEBS Lett 580:955–959

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S, Ohtani T, Iida S, Sunohara Y, Matsushita K, Maeda H, Tanetani Y, Kawai K, Kawamukai M, Kadowaki K (2009) Development of CoQ10-enriched rice from giant embryo lines. Breed Sci 59:321–326

    Article  Google Scholar 

  • Takahashi W, Oishi H, Ebina M, Komatsu T, Takamizo T (2010) Production of transgenic Italian ryegrass expressing the betaine aldehyde dehydrogenase gene of zoysiagrass. Breed Sci 60:279–285

    Article  CAS  Google Scholar 

  • Toki S, Hara N, Ono K, Onodera H, Tagiri A, Oka S, Tanaka H (2006) Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice. Plant J 47:969–976

    Article  PubMed  CAS  Google Scholar 

  • Toriyama K, Hinata K (1985) Cell suspension and protoplast culture in rice. Plant Sci 41:179–183

    Article  CAS  Google Scholar 

  • Toyama K, Bae CH, Kang JG, Lim YP, Adachi T, Riu KZ, Song PS, Lee HY (2003) Production of Herbicide-tolerant zoysiagrass by Agrobacterium-mediated transformation. Mol cells 16:19–27

    PubMed  CAS  Google Scholar 

  • Vogel KP, Brejda JJ, Walters DT, Buxton DR (2002) Switchgrass biomass production in the Midwest USA: harvest and nitrogen management. Agron J 94:413–420

    Article  Google Scholar 

  • Wang ZY, Ge Y (2005) Agrobacterium-mediated high efficiency transformation of tall fescue (Festuca arundinacea). J Plant Physiol 162:103–113

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Sparks C, Amoah B, Jones HD (2003) Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Rep 21:659–668

    PubMed  CAS  Google Scholar 

  • Yasmin A, Debener T (2010) Transient gene expression in rose petals via Agrobacterium infiltration. Plant Cell Tissue Organ Cult 102:245–250

    Article  CAS  Google Scholar 

  • Zhang K, Wang J, Hu X, Yang A, Zhang J (2010) Agrobacterium-mediated transformation of shoot apices of Kentucky bluegrass(Poa pratensis L.) and production of transgenic plants carrying a betA gene. Plant Cell Tissue Organ Cult 102:135–143

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Masumi Ebina for valuable suggestions and Dr. Hiroki Matsuyama for support with the HPLC analysis (National Institute of Livestock and Grassland Science). Also, we thank Taiji Adachi (Osaka, Japan) for critical reading of the manuscript. This work was funded by the Ministry of Agriculture, Forestry and Fisheries (MAFF) research project ‘Development of innovative crops through the molecular analysis of useful genes’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadashi Takamizo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, MS., Takahashi, S., Kadowaki, Ki. et al. Expression of CoQ10-producing ddsA transgene by efficient Agrobacterium-mediated transformation in Panicum meyerianum . Plant Cell Tiss Organ Cult 107, 325–332 (2011). https://doi.org/10.1007/s11240-011-9984-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-011-9984-9

Keywords

Navigation