Skip to main content
Log in

Transgenic sweetpotato plants expressing an LOS5 gene are tolerant to salt stress

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Transgenic sweetpotato (cv. Lizixiang) plants exhibiting enhanced salt tolerance were developed using LOW OSMOTIC STRESS 5 (LOS5) with Agrobacterium tumefaciens-mediated transformation. A. tumefaciens strain EHA105 harbors the pCAMBIA1300 binary vector with the LOS5 and hygromycin phosphotransferase II (hptII) genes. Selection culture was conducted using 25 mg l−1 hygromycin. A total of 26 plants were produced from the inoculated 200 cell aggregates of Lizixiang via somatic embryogenesis. PCR analysis showed that 23 of the 26 regenerated plants were transgenic plants. All of the transgenic plants exhibited higher salt tolerance compared to the untransformed control plants by in vitro assay for salt tolerance with 86 mM NaCl. When plants were exposed to 86 mM NaCl, 16 transgenic plants had significantly higher levels of superoxide dismutase (SOD), proline, and abscisic acid (ABA) and significantly lower malonaldehyde (MDA) contents than those in untransformed control plants. Salt tolerance of these 16 plants was further evaluated with Hoagland solution containing 86 mM NaCl in a greenhouse. Four of the sixteen had significantly better growth and rooting ability than the remaining 12 plants and control plants. Stable integration of the LOS5 gene into the genome of the 4 salt-tolerant transgenic plants was confirmed by Southern blot analysis, and the copy number of integrated LOS5 gene ranged from 1 to 3. High level of LOS5 gene expression in the 4 salt-tolerant transgenic plants was demonstrated by real-time quantitative PCR analysis. This study provides an important approach for improving salt tolerance of sweetpotato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

AS:

Acetosyringone

Carb:

Carbenicillin

CTAB:

Cetyltrimethylammonium bromide

2,4-D:

2,4-Dichlorophenoxyacetic acid

EDTA:

Ethylenediaminetetraacetic acid

ELISA:

Enzyme-linked immuno sorbent assay

hptII:

Hygromycin phosphotransferase II gene

Hyg:

Hygromycin

LB:

Luria-Bertani

MDA:

Malonaldehyde

MS:

Murashige and Skoog

SOD:

Superoxide dismutase

References

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    Article  PubMed  CAS  Google Scholar 

  • Bao AK, Wang SM, Wu GQ, Xi JJ, Zhang JL, Wang CM (2009) Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Sci 176:232–240

    Article  CAS  Google Scholar 

  • Chen LH, Zhang B, Xu ZQ (2008) Salt tolerance conferred by overexpression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1 in common buckwheat (Fagopyrum esculentum). Transgenic Res 17:121–132

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Zhu JH, Zhu JK (2006) Salt stress signaling and mechanisms of plant salt tolerance. In: Setlow JK (ed) Genetic engineering, vol 27. Springer, New York, pp 141–177

    Chapter  Google Scholar 

  • Choi HJ, Chandrasekhar T, Lee HY, Kim KM (2007) Production of herbicide-resistant transgenic sweet potato plants through Agrobacterium tumefaciens method. Plant Cell Tissue Organ Cult 91:235–242

    Article  CAS  Google Scholar 

  • Cipriani G, Michaud D, Brunelle F, Golmirzaie A, Zhang DP (1999) Expression of soybean proteinase inhibitor in sweetpotato. CIP Program Rep 1997–1998:271–277

    Google Scholar 

  • Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • Dhir SK, Oglesby J, Bhagsari AS (1998) Plant regeneration via embryogenesis and transient gene expression in sweet potato protoplasts. Plant Cell Rep 17:665–669

    Article  CAS  Google Scholar 

  • Duncan DB (1955) Multiple range and multiple F tests. Biometrics 11:1–42

    Article  Google Scholar 

  • Gao XH, Ren ZH, Zhao YX, Zhang H (2003) Overexpression of SOD2 increases salt tolerance of Arabidopsis. Plant Physiol 133:1873–1881

    Article  PubMed  CAS  Google Scholar 

  • Gao S, Yu B, Yuan L, Zhai H, He SZ, Liu QC (2011) Production of transgenic sweetpotato plants resistant to stem nematodes using oryzacystatin-I gene. Sci Hortic 128:408–414

    Article  CAS  Google Scholar 

  • Gupta S, Srivastava J (1990) Effect of salt stress on morphophysiological parameters in wheat. Indian J Plant Physiol 32:162–171

    Google Scholar 

  • Hasthanasombut S, Supaibulwatana K, Mii M, Nakamura I (2011) Genetic manipulation of Japonica rice using the OsBADH1 gene from Indica rice to improve salinity tolerance. Plant Cell Tissue Organ Cult 104:79–89

    Article  CAS  Google Scholar 

  • He ZP (1993) A laboratory guide to chemical control technology on field crop. Beijing Agricultural University Press, Beijing

    Google Scholar 

  • He SZ, Han YF, Wang YP, Zhai H, Liu QC (2009) In vitro selection and identification of sweetpotato (Ipomoea batatas (L.) Lam.) plants tolerant to NaCl. Plant Cell Tissue Organ Cult 96:69–74

    Article  CAS  Google Scholar 

  • He C, Yang AF, Zhang WW, Gao Q, Zhang JR (2010) Improved salt tolerance of transgenic wheat by introducing betA gene for glycine betaine synthesis. Plant Cell Tissue Organ Cult 101:65–78

    Article  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stn Circ 347:1–39

    Google Scholar 

  • Huai JL, Zheng J, Wang GY (2009) Overexpression of a new Cys2/His2 zinc finger protein ZmZF1 from maize confers salt and drought tolerance in transgenic Arabidopsis. Plant Cell Tissue Organ Cult 99:117–124

    Article  CAS  Google Scholar 

  • Huang PM, Chen JY, Wang SJ (2009) Tissue-specific regulation of rice molybdenum cofactor sulfurase gene in response to salt stress and ABA. Acta Physiol Plant 31:545–551

    Article  CAS  Google Scholar 

  • Ikegami K, Okamoto M, Seo M, Koshiba T (2009) Activation of abscisic acid biosynthesis in the leaves of Arabidopsis thaliana in response to water deficit. J Plant Res 122:235–243

    Article  PubMed  CAS  Google Scholar 

  • Jin TC, Chang Q, Li WF, Yin DX, Li ZJ, Wang DL, Liu B, Liu LX (2010) Stress-inducible expression of GmDREB1 conferred salt tolerance in transgenic alfalfa. Plant Cell Tissue Organ Cult 100:219–227

    Article  CAS  Google Scholar 

  • Kimura T, Otani M, Noda T, Ideta O, Shimada T, Saito A (2001) Absence of amylose in sweetpotato [Ipomoea batatas (L.) Lam.] following the introduction of granule-bound starch synthase I cDNA. Plant Cell Rep 20:663–666

    CAS  Google Scholar 

  • Kishor PBK, Hong ZLM, Miao GH, Hu CAA, Verma DPS (1995) Overexpression of Delta 1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    PubMed  CAS  Google Scholar 

  • Koca H, Ozdemir F, Turkan I (2006) Effect of salt stress on lipid peroxidation and superoxide dismutase and peroxidase activities of Lycopersicon esculentum and L. pennellii. Biol Plant 50(4):745–748

    Article  CAS  Google Scholar 

  • Kumar V, Shriram V, Kavi Kishor PB, Jawali N, Shitole MG (2010) Enhanced proline accumulation and salt stress tolerance of transgenic indica rice by over-expressing P5CSF129A gene. Plant Biotechnol Rep 4:37–48

    Article  Google Scholar 

  • Li YH, Zhang YZ, Feng FJ, Liang D, Cheng LL, Ma FW, Shi SG (2010) Overexpression of a Malus vacuolar Na+/H+ antiporter gene (MdNHX1) in apple rootstock M.26 and its influence on salt tolerance. Plant Cell Tissue Organ Cult 102:337–345

    Article  CAS  Google Scholar 

  • Lim S, Kim YH, Kim SH, Kwon SY, Lee HS, Kim JS, Cho KY, Paek KY, Kwak SS (2007) Enhanced tolerance of transgenic sweetpotato plants that express both CuZnSOD and APX in chloroplasts to methyl viologen-mediated oxidative stress and chilling. Mol Breeding 19:227–239

    Article  CAS  Google Scholar 

  • Liu QC, Zhai H, Wang Y, Zhang DP (2001) Efficient plant regeneration from embryogenic suspension cultures of sweetpotato. In Vitro Cell Dev Biol Plant 37:564–567

    Google Scholar 

  • Morán R, García R, López A, Zaldúa Z, Mena J, García M, Armas R, Somonte D, Rodríguez J, Gómez M, Pimentel E (1998) Transgenic sweet potato plants carrying the delta-endotoxin gene from Bacillus thuringiensis var. tenebrionis. Plant Sci 139:175–184

    Article  Google Scholar 

  • Munns R (2002) The impact of salinity stress. http://www.plantstress.com/Articles/index.asp

  • Newell CA, Lowe JM, Merryweather A, Rooke LM, Hamilton WDO (1995) Transformation of sweetpotato (Ipomoea batatas (L.) Lam.) with Agrobacterium tumefaciens and regeneration of plants expressing cowpea trypsin inhibitor and snowdrop lectin. Plant Sci 107:215–227

    Article  CAS  Google Scholar 

  • Okada Y, Saito A, Nishiguchi M, Kimura T, Mori M, Hanada K, Sakai J, Miyazaki C, Matsuda Y, Murata T (2001) Virus resistance in transgenic sweetpotato [Ipomoea batatas L. (Lam.)] expressing the coat protein gene of sweetpotato feathery mottle virus. Theor Appl Genet 103:743–751

    Article  CAS  Google Scholar 

  • Otani M, Wakita Y, Shimada T (2003) Production of herbicide-resistant sweetpotato (Ipomoea batatas (L.) Lam.) plants by Agrobacterium tumefaciens-mediated transformation. Breeding Sci 53:145–148

    Article  CAS  Google Scholar 

  • Qiao GR, Zhou J, Jiang J, Sun YH, Pan LY, Song HG, Jiang JM, Zhuo RY, Wang XJ, Sun ZX (2010) Transformation of Liquidambar formosana L. via Agrobacterium tumefaciens using a mannose selection system and recovery of salt tolerant lines. Plant Cell Tissue Organ Cult 102:163–170

    Article  CAS  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barly: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci 81:8014–8018

    Article  PubMed  CAS  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C T method. Nat Protoc 3:1101–1108

    Article  PubMed  CAS  Google Scholar 

  • Shen YY, Huang CL, Zhang XH, Cao MQ (2002) Plant drought tolerance molecular mechanism. Chin J Eco-Agric 10:30–34

    Google Scholar 

  • Shimada T, Otani M, Hamada T, Kim SH (2006) Increase of amylose content of sweetpotato starch by RNA interference of the starch branching enzyme II gene (IbSBEII). Plant Biotechnol 23:85–90

    Article  CAS  Google Scholar 

  • Subramanyam K, Sailaja KV, Subramanyam K, Rao DM, Lakshmidevi K (2010) Ectopic expression of an osmotin gene leads to enhanced salt tolerance in transgenic chilli pepper (Capsicum annum L.). Plant Cell Tissue Organ Cult doi:10.1007/s11240-010-9850-1

  • Ushimaru T, Nakagawa T, Fujioka Y, Daicho K, Naito M, Yamauchi Y, Nonaka H, Amako K, Yamawaki K, Murata N (2006) Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. J Plant Physiol 163:1179–1184

    Article  PubMed  CAS  Google Scholar 

  • Verbruggen N, Villarroel R, Montagu MV (1993) Osmoregulation of a pyrrilone-5-carboxylate reductase gene in Arabidopsis thaliana. Plant Physiol 103:171–181

    Article  Google Scholar 

  • Wakita Y, Otani M, Hamada T, Mori M, Iba K, Shimada T (2001) A tobacco microsomal ω-3 fatty acid desaturase gene increases the linolenic acid content in transgenic sweetpotato (Ipomoea batatas). Plant Cell Rep 20:244–249

    Article  CAS  Google Scholar 

  • Watad AEA, Reinhold L, Lerner HR (1983) Comparison between a stable NaCl-selected Nicotiana cell line and the wild type. Plant Physiol 73:624–629

    Article  PubMed  CAS  Google Scholar 

  • Wei Q, Guo YJ, Cao HM, Kuai BK (2010) Cloning and characterization of an AtNHX2-like Na+/H+ antiporter gene from Ammopiptanthus mongolicus (Leguminosae) and its ectopic expression enhanced drought and salt tolerance in Arabidopsis thaliana. Plant Cell Tissue Organ Cult doi:10.1007/s11240-010-9869-3

  • Xie ZY, Yang GS (2003) Advances in salt tolerance of forage plants. Pratacultural Sci 20:11–17

    Google Scholar 

  • Xiong LM, Ishitani M, Lee H, Zhu JK (2001) The arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell 13:2063–2083

    Article  PubMed  CAS  Google Scholar 

  • Yi G, Shin YM, Choe G, Shin B, Kim YS, Kim KM (2007) Production of herbicide-resistant sweet potato plants transformed with the bar gene. Biotechnol Lett 29:669–675

    Article  PubMed  CAS  Google Scholar 

  • Yu B, Zhai H, Wang YP, Zang N, He SZ, Liu QC (2007) Efficient Agrobacterium tumefaciens-mediated transformation using embryogenic suspension cultures in sweetpotato Ipomoea batatas (L.) Lam. Plant Cell Tissue Organ Cult 90:265–273

    Article  CAS  Google Scholar 

  • Zang N, Zhai H, Gao S, Chen W, He SZ, Liu QC (2009) Efficient production of transgenic plants using the bar gene for herbicide resistance in sweetpotato. Sci Hortic 122:649–653

    Article  CAS  Google Scholar 

  • Zhang HX, Hodson JN, Wlliams JP, Blumwald E (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci 98:12832–12836

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Gong ZZ, College of Biological Sciences, China Agricultural University, Beijing, China, and Prof. Wang T, State Key Laboratory of Agrobiotechnology, Beijing, China, for providing LOS5 gene and Strain EHA 105, respectively. We also thank Dr. Michael Portereiko, Ceres, Inc. USA, for English improvement. This work was supported by China Agro-industry Research System (Sweetpotato), the National High-Tech Research and Development Project of China (no. 2009AA10Z102) and the National Transgenic Plants Project of China (no. 2009ZX08009-064B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingchang Liu.

Additional information

Shang Gao and Li Yuan contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, S., Yuan, L., Zhai, H. et al. Transgenic sweetpotato plants expressing an LOS5 gene are tolerant to salt stress. Plant Cell Tiss Organ Cult 107, 205–213 (2011). https://doi.org/10.1007/s11240-011-9971-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-011-9971-1

Keywords

Navigation