Skip to main content
Log in

Activation of abscisic acid biosynthesis in the leaves of Arabidopsis thaliana in response to water deficit

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

It is well known that endogenous abscisic acid (ABA) levels increase rapidly in response to drought stress and that this induces stomatal closure. In Arabidopsis thaliana, ABA levels increased rapidly in the leaves and roots when intact wild-type whole plants were exposed to drought stress. However, if the leaves and roots were separated and exposed to drought independently, the ABA level increased only in the leaves. These results suggest that, under our experimental conditions, ABA is synthesized mainly in the leaves in response to drought stress and that some of the ABA accumulated in the leaves is transported to the roots. Tracer experiments using isotope-labeled ABA indicate that the movement of ABA from leaves to roots is activated by water deficit in the roots. We also demonstrate that the endogenous ABA level in the leaves increased only when the leaves themselves were exposed to drought stress, suggesting that leaves play a major role in the production of ABA in response to acute water shortage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4a,b
Fig 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Asami T, Sekimata K, Wang JM, Yoneyama K, Takeuchi Y, Yoshida S (1999) Preparation of (±)-[1,2-13C2] abscisic acid for use as a stable and pure internal standard. J Chem Res Synop 11:658–659

    Article  Google Scholar 

  • BassiriRad H, Radin JW (1992) Temperature-dependent water and ion transport properties of barley and sorghum roots. Plant Physiol 99:34–37

    Article  PubMed  CAS  Google Scholar 

  • Bittner F, Oreb M, Mendel RR (2001) ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana. J Biol Chem 276:40381–40384

    Article  PubMed  CAS  Google Scholar 

  • Cheng WH, Endo A, Zhou L, Penney J, Chen HC, Arroyo A, Leon P, Nambara E, Asami T, Seo M, Koshiba T, Sheen J (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14:2723–2743

    Article  PubMed  CAS  Google Scholar 

  • Christmann A, Hoffmann T, Teplova I, Grill E, Müller A (2005) Generation of active pools of abscisic acid revealed by in vivo imaging of water-stressed Arabidopsis. Plant Physiol 137:209–219

    Article  PubMed  CAS  Google Scholar 

  • Christmann A, Weiler EW, Steudle E, Grill E (2007) A hydraulic signal in root-to-shoot signalling of water shortage. Plant J 52:167–174

    Article  PubMed  CAS  Google Scholar 

  • Davies WJ, Zhang J (1991) Root signals and the regulation of growth and development of plants in drying soil. Annu Rev Plant Physiol Plant Mol Biol 42:55–76

    Article  CAS  Google Scholar 

  • Endo A, Sawada Y, Takahashi H, Okamoto M, Ikegami K, Koiwai H, Seo M, Toyomasu T, Mitsuhashi W, Shinozaki K, Nakazono M, Kamiya Y, Koshiba T, Nambara E (2008) Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells. Plant Physiol 147:1984–1993

    Article  PubMed  CAS  Google Scholar 

  • Everat-Bourbouloux A (1982) Transport and metabolism of labeled abscisic acid in broad-bean plants (Vicia faba L.). Physiol Plant 54:431–439

    Article  CAS  Google Scholar 

  • Holbrook NM, Shashidhar VR, James RA, Munns R (2002) Stomatal control in tomato with ABA-deficient roots: response of grafted plants to soil drying. J Exp Bot 53:1503–1514

    Article  PubMed  CAS  Google Scholar 

  • Imber D, Tal M (1970) Phenotypic reversion of flacca, a wilty mutant of tomato, by abscisic acid. Science 169:592–593

    Article  PubMed  CAS  Google Scholar 

  • Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325–333

    Article  PubMed  CAS  Google Scholar 

  • Jeschke WD, Holobradá M, Hartung W (1997) Growth of Zea mays L. plants with their seminal roots only. Effects on plant development, xylem transport, mineral nutrition and the flow and distribution of abscisic acid (ABA) as a possible shoot to root signal. J Exp Bot 48:1229–1239

    Article  CAS  Google Scholar 

  • Khalil AAM, Grace J (1993) Does xylem sap ABA control the stomatal behavior of water-stressed sycamore (Acer pseudoplatanus L.) seedlings? J Exp Bot 44:1127–1134

    Article  CAS  Google Scholar 

  • Koiwai H, Nakaminami K, Seo M, Mitsuhashi W, Toyomasu T, Koshiba T (2004) Tissue-specific localization of an abscisic acid biosynthetic enzyme, AAO3, in Arabidopsis. Plant Physiol 134:1697–1707

    Article  PubMed  CAS  Google Scholar 

  • Koornneef M, Jorna ML, Brinkhorst-van der Swan DLC, Karssen CM (1982) The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in non-germinating gibberellin sensitive lines of Arabidopsis thaliana (L.) Heynh. Theor Appl Genet 61:385–393

    CAS  Google Scholar 

  • Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, Hirai N, Koshiba T, Kamiya Y, Nambara E (2004) The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism. EMBO J 23:1647–1654

    Article  PubMed  CAS  Google Scholar 

  • Marin E, Nussaume L, Quesada A, Gonneau M, Sotta B, Hugueney P, Frey A, Marion-Poll A (1996) Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO J 15:2331–2342

    PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    Article  PubMed  CAS  Google Scholar 

  • Nambara E, Kawaide H, Kamiya Y, Naito S (1998) Characterization of an Arabidopsis thaliana mutant that has a defect in ABA accumulation: ABA-dependent and ABA-independent accumulation of free amino acids during dehydration. Plant Cell Physiol 39:853–858

    PubMed  CAS  Google Scholar 

  • Neales TF, Masia A, Zhang J, Davies WJ (1989) The effects of partially drying part of the root system of Helianthus annuus on the abscisic acid content of the roots, xylem sap and leaves. J Exp Bot 40:1113–1120

    Article  CAS  Google Scholar 

  • North HM, De Almeida A, Boutin JP, Frey A, To A, Botran L, Sotta B, Marion-Poll A (2007) The Arabidopsis ABA-deficient mutant aba4 demonstrates that the major route for stress-induced ABA accumulation is via neoxanthin isomers. Plant J 50:810–824

    Article  PubMed  CAS  Google Scholar 

  • Parry AD, Horgan R (1992) Abscisic acid biosynthesis in roots I. The identification of potential abscisic acid precursors, and other carotenoids. Planta 187:185–191

    Article  CAS  Google Scholar 

  • Qin X, Zeevaart JAD (1999) The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proc Natl Acad Sci USA 96:15354–15361

    Article  PubMed  CAS  Google Scholar 

  • Saito S, Hirai N, Matsumoto C, Ohigashi H, Ohta D, Sakata K, Mizutani M (2004) Arabidopsis CYP707As encode (+)-abscisic acid 8′-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiol 134:1439–1449

    Article  PubMed  CAS  Google Scholar 

  • Sauter A, Davies WJ, Hartung W (2001) The long-distance abscisic acid signal in the droughted plant: the fate of the hormone on its way from root to shoot. J Exp Bot 52:1991–1997

    Article  PubMed  CAS  Google Scholar 

  • Schachtman DP, Goodger JQD (2008) Chemical root to shoot signaling under drought. Trends Plant Sci 13:281–287

    Article  PubMed  CAS  Google Scholar 

  • Seo M, Koiwai H, Akaba S, Komano T, Oritani T, Kamiya Y, Koshiba T (2000a) Abscisic aldehyde oxidase in leaves of Arabidopsis thaliana. Plant J 23:481–488

    Article  PubMed  CAS  Google Scholar 

  • Seo M, Peeters AJM, Koiwai H, Oritani T, Marion-Poll A, Zeevaart JAD, Koornneef M, Kamiya Y, Koshiba T (2000b) The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proc Natl Acad Sci USA 97:12908–12913

    Article  PubMed  CAS  Google Scholar 

  • Stoll M, Loveys B, Dry P (2000) Hormonal changes induced by partial root-zone drying of irrigated grapevine. J Exp Bot 51:1627–1634

    Article  PubMed  CAS  Google Scholar 

  • Tan BC, Schwartz SH, Zeevaart JAD, McCarty DR (1997) Genetic control of abscisic acid biosynthesis in maize. Proc Natl Acad Sci USA 94:12235–12240

    Article  PubMed  CAS  Google Scholar 

  • Toh S, Imamura A, Watanabe A, Nakabayashi K, Okamoto M, Jikumaru Y, Hanada A, Aso Y, Ishiyama K, Tamura N, Iuchi S, Kobayashi M, Yamaguchi S, Kamiya Y, Nambara E, Kawakami N (2008) High temperature-induced abscisic Acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. Plant Physiol 146:1368–1385

    Article  PubMed  CAS  Google Scholar 

  • Verwoerd TC, Dekker BMM, Hoekema A (1989) A small-scale procedure for the rapid isolation of plant RNAs. Nucleic Acids Res 17:2362

    Article  PubMed  CAS  Google Scholar 

  • Xiong L, Ishitani M, Lee H, Zhu JK (2001) The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell 13:2063–2083

    Article  PubMed  CAS  Google Scholar 

  • Xiong L, Lee H, Ishitani M, Zhu JK (2002) Regulation of osmotic stress-responsive gene expression by the LOS6/ABA1 locus in Arabidopsis. J Biol Chem 277:8588–8596

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    Article  PubMed  CAS  Google Scholar 

  • Zeevaart JAD, Boyer GL (1984) Accumulation and transport of abscisic acid and its metabolites in Ricinus and Xanthium. Plant Physiol 74:934–939

    Article  PubMed  CAS  Google Scholar 

  • Zeevaart JAD, Creelman RA (1988) Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Biol 39:439–473

    Article  CAS  Google Scholar 

  • Zhang J, Zhang X, Liang J (1995) Exudation rate and hydraulic conductivity of maize roots are enhanced by soil drying and abscisic acid treatment. New Phytol 131:329–336

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Tadao Asami (University of Tokyo) for kindly providing the 13C-labeled ABA, and Dr. Shinjiro Yamaguchi (RIKEN Plant Science Center) for critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomokazu Koshiba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikegami, K., Okamoto, M., Seo, M. et al. Activation of abscisic acid biosynthesis in the leaves of Arabidopsis thaliana in response to water deficit. J Plant Res 122, 235–243 (2009). https://doi.org/10.1007/s10265-008-0201-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-008-0201-9

Keywords

Navigation