Skip to main content
Log in

Characterization and expression pattern analysis of DcNAC gene in somatic embryos of Dendrobium candidum Wall Ex Lindl.

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The plant-specific “no apical meristem” genes are transcription factors that play diverse roles in plant development and stress responses. However, whether the gene family is also involved in somatic embryogenesis remains unknown, and no NAC family genes have been identified from orchid species. Here, we cloned and characterized a new member of NAC family from somatic embryos of Dendrobium candidum. Phylogenetic analysis indicated that DcNAC fell into the NAM subgroup based on similarities in protein sequence. Expression pattern analysis indicated that DcNAC exhibited a specific expression pattern in tissues examined, high levels of DcNAC mRNA was detected in protocorm-like bodies, and predominantly in the shoot apical meristem region as detected by in situ hybrization. Subcellular localization analysis showed that DcNAC protein is restricted in the nucleus through transient expression in Nicotiana benthamiana. Thus, DcNAC is the first NAC family gene isolated from orchid species, and our results provide the foundation for future investigations on the molecular mechanisms of somatic embryogenesis and for genetic improvement of Dendrobium candidum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9:841–857

    Article  PubMed  CAS  Google Scholar 

  • Aquea F, Arce-Johnson P (2008) Identification of genes expressed during early somatic embryogenesis in Pinus radiata. Plant Physiol Biochem 46:559–568

    Article  PubMed  CAS  Google Scholar 

  • Arroyo-Herrera A, Gonzalez AK, Moo RC, Quiroz-Figueroa FR, Loyola-Vargas VM, Rodriguez-Zapata LC, DHondt CB, Suarez-Solis VM, Castano E (2008) Expression of WUSCHEL in Coffea canephora causes ectopic morphogenesis and increases somatic embryogenesis. Plant Cell Tiss Organ Cult 94:171–180

    Article  Google Scholar 

  • Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu CM, van Lammeren AA, Miki BL, Custers JB, van Lookeren Campagne MM (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749

    Article  PubMed  CAS  Google Scholar 

  • Che P, Gingerich DJ, Lall S, Howell SH (2002) Global and hormone-induced gene expression changes during shoot development in Arabidopsis. Plant Cell 14:2771–2785

    Article  PubMed  CAS  Google Scholar 

  • Chugh A, Khurana P (2002) Gene expression during somatic embryogenesis - recent advances. Current Science 83:715–730

    CAS  Google Scholar 

  • Collinge M, Boller T (2001) Differential induction of two potato genes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding. Plant Mol Biol 46:521–529

    Article  PubMed  CAS  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A Plant DNA Minipreparation: Version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Duval M, Hsieh TF, Kim SY, Thomas TL (2002) Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily. Plant Mol Biol 50:237–248

    Article  PubMed  CAS  Google Scholar 

  • Ernst HA, Olsen AN, Larsen S, Lo Leggio L (2004) Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Rep 5:297–303

    Article  PubMed  CAS  Google Scholar 

  • Gao F, Xiong AS, Peng RH, Jin XF, Xu J, Zhu B, Chen JM, Yao QH (2010) OsNAC52, a rice NAC transcription factor, potentially responds to ABA and confers drought tolerance in transgenic plants. Plant Cell Tiss Organ Cult 100:255–262

    Article  CAS  Google Scholar 

  • Greve K, La Cour T, Jensen MK, Poulsen FM, Skriver K (2003) Interactions between plant RING-H2 and plant-specific NAC (NAM/ATAF1/2/CUC2) proteins: RING-H2 molecular specificity and cellular localization. Biochem J 371:97–108

    Article  PubMed  CAS  Google Scholar 

  • Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt ED, Boutilier K, Grossniklaus U, de Vries SC (2001) The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 127:803–816

    Article  PubMed  CAS  Google Scholar 

  • Hegedus D, Yu M, Baldwin D, Gruber M, Sharpe A, Parkin I, Whitwill S, Lydiate D (2003) Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Mol Biol 53:383–397

    Article  PubMed  CAS  Google Scholar 

  • Higashi K, Shiota H, Kamada H (1998) Patterns of expression of the genes for glutamine synthetase isoforms during somatic and zygotic embryogenesis in carrot. Plant Cell Physiol 39:418–424

    PubMed  CAS  Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci U S A 103:12987–12992

    Article  PubMed  CAS  Google Scholar 

  • John I, Hackett R, Cooper W, Drake R, Farrell A, Grierson D (1997) Cloning and characterization of tomato leaf senescence-related cDNAs. Plant Mol Biol 33:641–651

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi K, Ueguchi-Tanaka M, Yoshida KT, Nagato Y, Matsusoka M, Hirano HY (2000) Molecular analysis of the NAC gene family in rice. Mol Gen Genet 262:1047–1051

    Article  PubMed  CAS  Google Scholar 

  • Kiselev KV, Turlenko AV, Zhuravlev YN (2009) CDPK gene expression in somatic embryos of Panax ginseng expressing rolC. Plant Cell Tiss Organ Cult 99:141–149

    Article  CAS  Google Scholar 

  • Kunieda T, Mitsuda N, Ohme-Takagi M, Takeda S, Aida M, Tasaka M, Kondo M, Nishimura M, Hara-Nishimura I (2008) NAC Family Proteins NARS1/NAC2 and NARS2/NAM in the Outer Integument Regulate Embryogenesis in Arabidopsis. Plant Cell 20:2631–2642

    Article  PubMed  CAS  Google Scholar 

  • Kusano H, Asano T, Shimada H, Kadowaki K (2005) Molecular characterization of ONAC300, a novel NAC gene specifically expressed at early stages in various developing tissues of rice. Mol Genet Genomics 272:616–626

    Article  PubMed  CAS  Google Scholar 

  • Lin X, Hwang GJ, Zimmerman JL (1996) Isolation and characterization of a diverse set of genes from carrot somatic embryos. Plant Physiol 112:1365–1374

    Article  PubMed  CAS  Google Scholar 

  • Lotan T, Ohto M, Yee KM, West MA, Lo R, Kwong RW, Yamagishi K, Fischer RL, Goldberg RB, Harada JJ (1998) Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93:1195–1205

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Koop HU (1997) Somatic embryogenesis in cultured immature zygotic embryos and leaf protoplasts of Arabidopsis thaliana ecotypes. Planta 202:387–396

    Article  PubMed  CAS  Google Scholar 

  • Montero-Cortes M, Rodriguez-Paredes F, Burgeff C, Perez-Nunez T, Cordova I, Oropeza C, Verdeil JL, Saenz L (2010) Characterisation of a cyclin-dependent kinase (CDKA) gene expressed during somatic embryogenesis of coconut palm. Plant Cell Tiss Organ Cult 102:251–258

    Article  CAS  Google Scholar 

  • Nishiwaki M, Fujino K, Koda Y, Masuda K, Kikuta Y (2000) Somatic embryogenesis induced by the simple application of abscisic acid to carrot (Daucus carota L.) seedlings in culture. Planta 211:756–759

    Article  PubMed  CAS  Google Scholar 

  • Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y, Yamamoto K, Kikuchi S (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res 10:239–247

    Article  PubMed  CAS  Google Scholar 

  • Peng H, Cheng HY, Chen C, Yu XW, Yang JN, Gao WR, Shi QH, Zhang H, Li JG, Ma H (2009) A NAC transcription factor gene of Chickpea (Cicer arietinum), CarNAC3, is involved in drought stress response and various developmental processes. J Plant Physiol 166:1934–1945

    Article  PubMed  CAS  Google Scholar 

  • Raval M, Chattoo BB (1993) Role of media constituents and proline in callus growth, somatic embryogenesis and regeneration of Oryza sativa cv Indica. Indian J Exp Biol 31:600–603

    PubMed  CAS  Google Scholar 

  • Riechmann JL, Heard J, Martin G, Reuber L, Jiang CZ, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu CL (2000) Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science 290:2105–2110

    Article  PubMed  CAS  Google Scholar 

  • Sablowski RW, Meyerowitz EM (1998) A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell 92:93–103

    Article  PubMed  CAS  Google Scholar 

  • Schmidt ED, Guzzo F, Toonen MA, de Vries SC (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062

    PubMed  CAS  Google Scholar 

  • Selth LA, Dogra SC, Rasheed MS, Healy H, Randles JW, Rezaian MA (2005) A NAC domain protein interacts with tomato leaf curl virus replication accessory protein and enhances viral replication. Plant Cell 17:311–325

    Article  PubMed  CAS  Google Scholar 

  • Souer E, van Houwelingen A, Kloos D, Mol J, Koes R (1996) The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85:159–170

    Article  PubMed  CAS  Google Scholar 

  • Sparkes IA, Runions J, Kearns A, Hawes C (2006) Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc 1:2019–2025

    Article  PubMed  CAS  Google Scholar 

  • Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, Fischer RL, Goldberg RB, Harada JJ (2001) LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci U S A 98:11806–11811

    Article  PubMed  CAS  Google Scholar 

  • Takada S, Hibara K, Ishida T, Tasaka M (2001) The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development 128:1127–1135

    PubMed  CAS  Google Scholar 

  • Taoka K, Yanagimoto Y, Daimon Y, Hibara K, Aida M, Tasaka M (2004) The NAC domain mediates functional specificity of CUP-SHAPED COTYLEDON proteins. Plant J 40:462–473

    Article  PubMed  CAS  Google Scholar 

  • Thakare D, Tang W, Hill K, Perry SE (2008) The MADS-domain transcriptional regulator AGAMOUS-LIKE15 promotes somatic embryo development in Arabidopsis and soybean. Plant Physiol 146:1663–1672

    Article  PubMed  CAS  Google Scholar 

  • Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498

    Article  PubMed  CAS  Google Scholar 

  • Vroemen CW, Mordhorst AP, Albrecht C, Kwaaitaal MACJ, de Vries SC (2003) The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis. Plant Cell 15:1563–1577

    Article  PubMed  CAS  Google Scholar 

  • Weir I, Lu J, Cook H, Causier B, Schwarz-Sommer Z, Davies B (2004) CUPULIFORMIS establishes lateral organ boundaries in Antirrhinum. Development 131:915–922

    Article  PubMed  CAS  Google Scholar 

  • Xie Q, Frugis G, Colgan D, Chua NH (2000) Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev 14:3024–3036

    Article  PubMed  CAS  Google Scholar 

  • Zakizadeh H, Stummann BM, Lutken H, Muller R (2010) Isolation and characterization of four somatic embryogenesis receptor-like kinase (RhSERK) genes from miniature potted rose (Rosa hybrida cv. Linda). Plant Cell Tiss Organ Cult 101:331–338

    Article  CAS  Google Scholar 

  • Zhang SZ, Liu XG, Lin YA, Xie GN, Fu FL, Liu HL, Wang J, Gao SB, Lan H, Rong TZ (2011) Characterization of a ZmSERK gene and its relationship to somatic embryogenesis in a maize culture. Plant Cell Tiss Organ Cult 105:29–37

    Article  CAS  Google Scholar 

  • Zhao P, Wang W, Feng FS, Wu F, Yang ZQ, Wang WJ (2007) High-frequency shoot regeneration through transverse thin cell layer culture in Dendrobium Candidum Wall Ex Lindl. Plant Cell Tiss Organ Cult 90:131–139

    Article  Google Scholar 

  • Zhao P, Wu F, Feng FS, Wang WJ (2008) Protocorm-like body (PLB) formation and plant regeneration from the callus culture of Dendrobium candidum Wall ex Lindl. In Vitro Cell Dev Biol Plant 44:178–185

    Article  CAS  Google Scholar 

  • Zimmerman JL (1993) Somatic Embryogenesis: A Model for Early Development in Higher Plants. Plant Cell 5:1411–1423

    Article  PubMed  Google Scholar 

  • Zuo J, Niu QW, Frugis G, Chua NH (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30:349–359

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wanjun Wang or Mengxiang Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, P., Wang, W. & Sun, M. Characterization and expression pattern analysis of DcNAC gene in somatic embryos of Dendrobium candidum Wall Ex Lindl.. Plant Cell Tiss Organ Cult 107, 151–159 (2011). https://doi.org/10.1007/s11240-011-9968-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-011-9968-9

Keywords

Navigation