Skip to main content
Log in

Involvement of ethylene in somatic embryogenesis in Scots pine (Pinus sylvestris L.)

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The involvement of the plant growth regulator ethylene in somatic embryo maturation of Pinus sylvestris (L.) was investigated. Genes that encoded 1-aminocyclopropane-1-carboxylate synthase (ACS), the rate-limiting enzyme in the ethylene biosynthesis pathway, were isolated and characterized. Two novel complementary DNAs (cDNAs) of PsACS1 and PsACS2 that encode ACS were isolated from embryogenic cultures (ECs) along with their polymerase chain reaction (PCR) products. The two sequences shared 69% similarity at amino acid level. PsACS1 was expressed in ECs at the proliferation and maturation stages, whereas the PsACS2 transcript was expressed in embryos only at the maturation stage. These expression levels varied among the five P. sylvestris genotypes studied. Moreover, the high levels of PsACS2 transcript abundance correlated with higher numbers of embryos at stage 3 of development. Ethylene production reached the highest levels at stage 3, and subsequently dropped. Hence, expression of PsACS2 corresponded to ethylene production during embryo development and could thus serve as a genetic marker for the early maturation stage. Both gene expression and ethylene production varied among the different genotypes. Investigating expression of ACC synthase genes further enhanced our understanding of the role of ethylene in embryo development and maturation and improved the efficiency of somatic embryogenesis of P. sylvestris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ECs:

Embryogenic cultures

NECs:

ECs not producing embryos at the maturation stage

SE:

Somatic embryogenesis

ABA:

Abscisic acid

BA:

6-Benzylamino-purine

2,4-D:

2,4-Dichlorophenoxyacetic acid

ACC:

1-Aminocyclopropane-1-carboxylic acid

ACS:

1-Aminocyclopropane-1-carboxylate (ACC) synthase

References

  • Alonso JM, Stepanova AN (2004) The ethylene signaling pathway. Science 306:1513–1515

    Article  PubMed  CAS  Google Scholar 

  • Aquea F, Arce-Johnson P (2008) Identification of genes expressed during early somatic embryogenesis in Pinus radiata. Plant Physiol Biochem 46:559–568

    Article  PubMed  CAS  Google Scholar 

  • Aquea F, Gutierrez F, Medina C, Arce-Johnson P (2008) A novel Otubain-like cysteine protease gene is preferentially expressed during somatic embryogenesis in Pinus radiata. Mol Biol Rep 35:567–573

    Article  PubMed  CAS  Google Scholar 

  • Aronen T, Pehkonen T, Ryynänen L (2009) Enhancement of somatic embryogenesis from immature zygotic embryos of Pinus sylvestris. Scand J For Res 24:372–383

    Article  Google Scholar 

  • Arteca JM, Arteca RN (1999) A multi-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase (ACS6) in mature Arabidopsis leaves. Plant Mol Biol 39:209–219

    Article  PubMed  CAS  Google Scholar 

  • Barnes JR, Lorenz WW, Dean JFD (2008) Characterization of a 1-aminocyclopropane-1-carboxylate synthase gene from loblolly pine (Pinus taeda L.). Gene 413:18–31

    Article  PubMed  CAS  Google Scholar 

  • Barry CS, Blume B, Bouzayen M, Cooper W, Hamilton AJ, Grierson D (1996) Differential expression of the 1-aminocyclopropane-1-carboxylate oxidase gene family of tomato. Plant J 9:525–535

    Article  PubMed  CAS  Google Scholar 

  • Barry CS, Llop-Tous MI, Grierson D (2000) The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiol 123:979–986

    Article  PubMed  CAS  Google Scholar 

  • Belmonte MF, Stasolla C (2009) Altered HBK3 expression affects glutathione and ascorbate metabolism during the early phases of Norway spruce (Picea abies) somatic embryogenesis. Plant Physiol Biochem 47:904–911

    Article  PubMed  CAS  Google Scholar 

  • Belmonte MF, Tahir M, Schroeder D, Stasolla C (2007) Overexpression of HBK3, a class IKNOX homeobox gene, improves the development of Norway spruce (Picea abies) somatic embryos. J Exp Bot 58:2851–2861

    Article  PubMed  CAS  Google Scholar 

  • Bonga JM, Klimaszewska KK, von Aderkas P (2010) Recalcitrance in clonal propagation, in particular of conifers. Plant Cell Tiss Org Cult 100:241–254

    Article  Google Scholar 

  • Botella JR, Arteca JM, Schlagnhaufer CD, Arteca RN, Phillips AT (1992) Identification and characterization of a full length cDNA encoding for an auxin induced 1-aminocyclopropane-1-carboxylate synthase from etiolated mung bean hypocotyl segments and expression of its messenger RNA in response to indole-3-acetic-acid. Plant Mol Biol 20:425–436

    Article  PubMed  CAS  Google Scholar 

  • Carneros E, Celestino C, Klimaszewska K, Park YS, Toribio M, Bonga JM (2009) Plant regeneration in Stone pine (Pinus pinea L.) by somatic embryogenesis. Plant Cell Tiss Org Cult 98:165–178

    Article  CAS  Google Scholar 

  • Chalupa V (1985) Somatic embryogenesis and plantlet regeneration from cultured immature and mature embryos of Picea abies (L.) Karst. Comm Inst Forest Chech 14:57–63

    Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolation RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • Dias LLC, Santa-Catarina C, Ribeiro DM, Barros RS, Floh EIS, Otoni WC (2009) Ethylene and polyamine production patterns during in vitro shoot organogenesis of two passion fruit species as affected by polyamines and their inhibitor. Plant Cell Tiss Org Cult 99:199–208

    Article  CAS  Google Scholar 

  • El Meskaoui A, Tremblay F (1999) Effects of sealed and vented gaseous microenvironments on the maturation of somatic embryos of black spruce with a special emphasis on ethylene. Plant Cell Tiss Org 56:201–209

    Article  CAS  Google Scholar 

  • El Meskaoui A, Tremblay FM (2001) Involvement of ethylene in the maturation of black spruce embryogenic cell lines with different maturation capacities. J Exp Bot 52:761–769

    PubMed  CAS  Google Scholar 

  • El Meskaoui A, Desjardins Y, Tremblay FM (2000) Kinetics of ethylene biosynthesis and its effects during maturation of white spruce somatic embryos. Physiol Plantarum 109:333–342

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies - an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fischerova L, Fischer L, Vondrakova Z, Vagner M (2008) Expression of the gene encoding transcription factor PaVP1 differs in Picea abies embryogenic lines depending on their ability to develop somatic embryos. Plant Cell Rep 27:435–441

    Article  PubMed  CAS  Google Scholar 

  • Hakman I, von Arnold S (1988) Somatic embryogenesis and plant regeneration from suspension cultures of Picea glauca (white spruce). Physiol Plantarum 72:579–587

    Article  CAS  Google Scholar 

  • Hakman I, Fowke LC, Von Arnold S, Eriksson T (1985) The development of somatic embryos in tissue cultures initiated from immature embryos of Picea abies (Norway Spruce). Plant Sci 38:53–59

    Article  Google Scholar 

  • Keinonen-Mettälä K, Jalonen P, Eurola P, von Arnold S, von Weissenberg K (1996) Somatic embryogenesis of Pinus sylvestris. Scand J For Res 11:242–250

    Article  Google Scholar 

  • Kendrick MD, Chang C (2008) Ethylene signaling: new levels of complexity and regulation. Curr Opin Plant Biol 11:479–485

    Article  PubMed  CAS  Google Scholar 

  • Kępczyńska E, Rudus I, Kepczynski J (2009a) Abscisic acid and methyl jasmonate as regulators of ethylene biosynthesis during somatic embryogenesis of Medicago sativa L. Acta Physiologiae Plantarum 31:1263–1270

    Article  Google Scholar 

  • Kępczyńska E, Rudus I, Kępczyński J (2009b) Endogenous ethylene in indirect somatic embryogenesis of Medicago sativa L. Plant Growth Regul 59:63–73

    Article  Google Scholar 

  • Klimaszewska K, Cyr DR (2002) Conifer somatic embryogenesis: I. Development. Dendrobiol 48:31–39

    Google Scholar 

  • Kong LS, Yeung EC (1994) Effects of ethylene and ethylene inhibitors on white spruce somatic embryo maturation. Plant Sci 104:71–80

    Article  CAS  Google Scholar 

  • Krajnakova J, Häggman H, Gomory D (2009) Effect of sucrose concentration, polyethylene glycol and activated charcoal on maturation and regeneration of Abies cephalonica somatic embryos. Plant Cell Tiss Org Cult 96:251–262

    Article  CAS  Google Scholar 

  • Kvaalen H (1994) Ethylene synthesis and growth in embryogenic tissue of Norway spruce - effects of oxygen, 1-aminocyclopropane-1-carboxylic acid, benzyladenine and 2, 4-dichlorophenoxyacetic acid. Physiol Plantarum 92:109–117

    Article  CAS  Google Scholar 

  • Lelu-Walter MA, Bernier-Cardou M, Klimaszewska K (2008) Clonal plant production from self- and cross-pollinated seed families of Pinus sylvestris (L.) through somatic embryogenesis. Plant Cell Tiss Org 92:31–45

    Article  Google Scholar 

  • Li XY, Huang FH (1996) Induction of somatic embryogenesis in loblolly pine (Pinus taeda L). In Vitro Cell Dev Plant 32:129–135

    Article  Google Scholar 

  • Niskanen AM, Lu JR, Seitz S, Keinonen K, von Weissenberg M, Pappinen A (2004) Effect of parent genotype on somatic embryogenesis in Scots pine (Pinus sylvestris). Tree Physiol 24:1259–1265

    PubMed  Google Scholar 

  • Peng HP, Lin TY, Wang NN, Shih MC (2005) Differential expression of genes encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis during hypoxia. Plant Mol Biol 58:15–25

    Article  PubMed  CAS  Google Scholar 

  • Prakash MG, Gurumurthi K (2010) Effects of type of explant and age, plant growth regulators and medium strength on somatic embryogenesis and plant regeneration in Eucalyptus camaldulensis. Plant Cell Tiss Org Cult 100:13–20

    Article  CAS  Google Scholar 

  • Ptak A, El Tahchy A, Wyzgolik G, Henry M, Laurain-Mattar D (2010) Effects of ethylene on somatic embryogenesis and galanthamine content in Leucojum aestivum L. cultures. Plant Cell Tiss Org Cult 102:61–67

    Article  CAS  Google Scholar 

  • Raffeiner B, Serek M, Winkelmann T (2009) Agrobacterium tumefaciens-mediated transformation of Oncidium and Odontoglossum orchid species with the ethylene receptor mutant gene etr1–1. Plant Cell Tiss Org Cult 98:125–134

    Article  CAS  Google Scholar 

  • Ralph SG, Hudgins JW, Jancsik S, Franceschi VR, Bohlmann J (2007) Aminocyclopropane carboxylic acid synthase is a regulated step in ethylene-dependent induced conifer defense. Full-length cDNA cloning of a multigene family, differential constitutive, and wound- and insect-induced expression, and cellular and subcellular localization in spruce and Douglas fir. Plant Physiol 143:410–424

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method - a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sato T, Theologis A (1989) Cloning the mRNA encoding 1-aminocyclopropane-1-carboxylate synthase, the key enzyme for ethylene biosynthesis in plants. Proc Natl Acad Sci USA 86:6621–6625

    Article  PubMed  CAS  Google Scholar 

  • Tajima F, Nei M (1984) Estimation of evolutionary distance between nucleotide sequences. Mol Biol Evol 1:269–285

    PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Tsuchisaka A, Yu GX, Jin HL, Alonso JM, Ecker JR, Zhang XM, Gao S, Theologis A (2009) A combinatorial interplay among the 1-aminocyclopropane-1-carboxylate isoforms regulates ethylene biosynthesis in Arabidopsis thaliana. Genetics 183:979–1003

    Article  PubMed  CAS  Google Scholar 

  • Vahala J, Schlagnhaufer CD, Pell EJ (1998) Induction of an ACC synthase cDNA by ozone in light grown Arabidopsis thaliana leaves. Physiol Plantarum 103:45–50

    Article  CAS  Google Scholar 

  • Van der Straeten D, Zhou ZY, Prinsen E, Van Onckelen HA, Van Montagu MC (2001) A comparative molecular-physiological study of submergence response in lowland and deepwater rice. Plant Physiol 125:955–968

    Article  Google Scholar 

  • Wann SR, Becwar MR, Nagmani R, Feirer RP, Johnson MA (1989) Biochemical differences between embryogenic and nonembryogenic calli of conifers. Trees Str Fun 3:173–178

    Google Scholar 

  • Yamagami T, Tsuchisaka A, Yamada K, Haddon WF, Harden LA, Theologis A (2003) Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J Biol Chem 278:49102–49112

    Article  PubMed  CAS  Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol Plant Mol Biol 35:155–189

    Article  CAS  Google Scholar 

  • Zakizadeh H, Stummann BM, Luetken H, Mueller R (2010) Isolation and characterization of four somatic embryogenesis receptor-like kinase (RhSERK) genes from miniature potted rose (Rosa hybrida cv. Linda). Plant Cell Tiss Org Cult 101:331–338

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Katileena Lohtander for her help with compiling the phylogenetic tree. We would also like to thank Mrs. Lahja Pesonen for her technical assistance and Dr. Nora Garcia for her technical help and discussions in the laboratory. Dr. Hanna Pasonen, Mrs. Anna-Maija Niskanen, Dr. Tuija Aronen, and Dr. Yeshitila Degefu and Prof. Fred O. Asiegbu are acknowledged for critical review of this manuscript. This work was supported by University of Helsinki project number 2108012 and by EU project number QLTRT 1999—679.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinrong Lu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 27 kb)

Supplementary material 2 (DOC 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, J., Vahala, J. & Pappinen, A. Involvement of ethylene in somatic embryogenesis in Scots pine (Pinus sylvestris L.). Plant Cell Tiss Organ Cult 107, 25–33 (2011). https://doi.org/10.1007/s11240-011-9952-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-011-9952-4

Keywords

Navigation