Skip to main content
Log in

Factors contributing to in vitro shoot-tip necrosis and their physiological interactions

  • Review
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Plant tissue culture plays an important role in the production and conservation of plant species. Its application, however, is hindered by some growth abnormalities such as shoot-tip necrosis (STN) caused by the culture conditions. This review article summarizes the literature published on the causes of in vitro STN in plants such as medium type, plant growth regulators, calcium, boron, medium additives, the culture environment, their interaction and physiological effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

B:

Boron

BA:

[6-benzylaminopurine]

Ca:

Calcium

IAA:

Indole-3-acetic acid

IBA:

Indole-3-butyric acid

iP:

N6-isopentenyladenine

MS medium:

Murashige and Skoog (1962) basal medium

mT:

meta-Topolin

mTR:

meta-Topolin riboside

PGR:

Plant growth regulators

STN:

Shoot-tip necrosis

TDZ:

Thidiazuron

WPM:

Woody plant medium

References

  • Abdulnour JE, Donnelley DJ, Barthakur NN (2000) The effect of boron on calcium uptake and growth in micropropagated potato plantlets. Potato Res 43:287–295

    Article  CAS  Google Scholar 

  • Abousalim A, Mantell SH (1994) A practical method for alleviating shoot-tip necrosis symptoms in in vitro shoot cultures of Pistacia vera cv. Matheur. J Hortic Sci 69:357–365

    Google Scholar 

  • Apostol KG, Zwiazek JJ (2004) Boron and water uptake in jack pine (Pinus banksiana) seedlings. Environ Exp Bot 51:145–153

    Article  CAS  Google Scholar 

  • Bairu MW, Jain N, Stirk WA, Dolezal K, van Staden J (2009) Solving the problem of shoot-tip necrosis in Harpagophytum procumbens by changing the cytokinin types, calcium and boron concentrations in the medium. S Afr J Bot 75:122–127

    Article  Google Scholar 

  • Barghchi M, Alderson PG (1996) The control of shoot tip necrosis in Pistacia vera L. in vitro. Plant Growth Regul 20:31–35

    Article  CAS  Google Scholar 

  • Bhalla PL, Mulwa RMS (2003) Tissue culture and macadamia propagation. Acta Hortic 616:343–346

    Google Scholar 

  • Biddulph O, Nakayama FS, Cory R (1961) Transpiration stream and ascension of calcium. Plant Physiol 36:429–436

    Article  PubMed  CAS  Google Scholar 

  • Bohnsack CW, Albert LS (1977) Early effects of boron deficiency on indoleacetic acid oxidase levels of squash root tips. Plant Physiol 59:1047–1050

    Article  PubMed  CAS  Google Scholar 

  • Borchert R (1986) Calcium acetate-induced calcium uptake and formation of calcium-oxalate crystals in isolated leaflets of Gleditsia triacanthos L. Planta 168:571–578

    Article  CAS  Google Scholar 

  • Bornman CH, Vogelmann TC (1984) Effect of rigidity of gel medium on benzyladenine induced adventitious bud formation and hyperhydricity in vitro in Picea abies. Physiol Plant 61:505–512

    Article  CAS  Google Scholar 

  • Bowen JE (1972) Effect of environmental factors on water utilization and boron accumulation and translocation in sugar cane. Plant Cell Physiol 13:703–714

    CAS  Google Scholar 

  • Brown PH, Hu H (1996) Phloem mobility of boron is species dependent: evidence of phloem mobility in sorbitol-rich species. Ann Bot 77:497–505

    Article  CAS  Google Scholar 

  • Brown PH, Shelp BJ (1997) Boron mobility in plants. Plant Soil 193:85–101

    Article  CAS  Google Scholar 

  • Brown PH, Bellaloui N, Hu H, Dandekar A (1999) Transgenically enhanced sorbitol synthesis facilitates phloem boron transport and increases tolerance of tobacco to boron deficiency. Plant Physiol 119:17–20

    Article  PubMed  CAS  Google Scholar 

  • Cassells AC, Walsh C (1994) The influence of gas-permeability of the culture lid on calcium uptake and stomatal function in Dianthus microplants. Plant Cell Tissue Organ Cult 37:171–178

    Article  Google Scholar 

  • Chang Y-C, Miller WB (2005) The development of upper leaf necrosis in Lilium ‘Star Gazer’. J Am Soc Hortic Sci 130:759–766

    Google Scholar 

  • De Block M (1990) Factors influencing the tissue culture and the Agrobacterium tumefaciens-mediated transformation of hybrid Aspen and Poplar clones. Plant Physiol 93:1110–1116

    Article  PubMed  Google Scholar 

  • Debergh PC (1983) Effect of agar brand and concentration on the tissue culture medium. Physiol Plant 59:270–276

    Article  CAS  Google Scholar 

  • Dunwell JM (1979) Anther culture in Nicotiana tabacum: the role of the culture vessel atmosphere in pollen embryo induction and growth. J Exp Bot 30:419–428

    Article  Google Scholar 

  • Dyson PW, Digby J (1975) Effect of calcium on sprout growth and sub-apical necrosis in Majestic potatoes. Potato Res 18:290–305

    Article  Google Scholar 

  • Grigoriadou K, Leventakis N, Vasilakakis M (2000) Effects of various culture conditions on proliferation and shoot tip necrosis in the pear cultivars ‘William’s’ and ‘Highland’ grown in vitro. Acta Hortic 520:103–108

    Google Scholar 

  • Hepler PK (2005) Calcium: a central regulator of plant growth and development. Plant Cell 17:2142–2155

    Article  PubMed  CAS  Google Scholar 

  • Hepler PK, Wayne RO (1985) Calcium and plant development. Annu Rev Plant Physiol 36:397–439

    Article  CAS  Google Scholar 

  • Hirschi KD (2004) The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiol 136:2438–2442

    Article  PubMed  CAS  Google Scholar 

  • Hu H, Brown PH (1994) Localization of boron in cell walls of squash and tobacco and its association with pectin: evidence for a structural role of boron in the cell wall. Plant Physiol 105:681–689

    PubMed  CAS  Google Scholar 

  • Hu H, Penn SC, Lebrilla CB, Brown PH (1997) Isolation and characterization of soluble boron complexes in higher plants: the mechanism of phloem mobility of boron. Plant Physiol 113:649–655

    Article  PubMed  CAS  Google Scholar 

  • Jain N, Bairu MW, Stirk WA, Dolezal K, van Staden J (2009) The effect of medium, carbon source and explant on regeneration and control of shoot-tip necrosis in Harpagophytum procumbens. S Afr J Bot 75:117–121

    Article  Google Scholar 

  • Karhu ST (1997) Axillary shoot proliferation of blue honeysuckle. Plant Cell Tissue Organ cult 48:195–201

    Article  Google Scholar 

  • Kataeva NV, Alexandrova IG, Butenko RG, Dragavtceva EV (1991) Effect of applied and internal hormones on vitrification and apical necrosis of different plants cultured in vitro. Plant Cell Tissue Organ Cult 27:149–154

    Article  CAS  Google Scholar 

  • Kintzios S, Stravropoulous ER, Skamneli S (2004) Accumulation of selected macronutrients and carbohydrates in melon tissue cultures: association with pathways of in vitro dedifferentiation and differentiation (organogenesis, somatic embryogenesis). Plant Sci 167:655–664

    Article  CAS  Google Scholar 

  • Kohl HC, Oertli JJ (1961) Distribution of boron in leaves. Plant Physiol 36:420–424

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni K, D’Souza L (2000) Control of in vitro shoot tip necrosis in Butea monosperma. Curr Sci 78:125–126

    Google Scholar 

  • Lakshmi SG, Raghava SBV (1993) Regeneration of plantlets from leaf disc cultures of rosewood: control of leaf abscission and shoot tip necrosis. Plant Sci 88:107–112

    Article  Google Scholar 

  • Lehto T, Kallio E, Aphalo PJ (2000) Boron mobility in two coniferous species. Ann Bot 86:547–550

    Article  CAS  Google Scholar 

  • Mackay WA, Tipton JL, Thompson GA (1995) Micropropagation of Mexican redbud, Cercis canadensis var. mexicana. Plant Cell Tissue Organ Cult 43:295–299

    Google Scholar 

  • Marin JA (2003) High survival rates during acclimatization of fruit tree rootstocks by increasing exposure to low relative humidity. Acta Hortic 616:139–142

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, Boston

    Google Scholar 

  • Martin KP, Zhang C-L, Slater A, Madasser YJ (2007) Control of shoot necrosis and plant death during micropropagation of banana and plantains (Musa spp.). Plant Cell Tissue Organ Cult 88:51–59

    Article  Google Scholar 

  • McCown BH, Sellmer JC (1987) General media and vessels suitable for woody plant culture. In: Bonga JM, Durzan L (eds) Cell and tissue culture in forestry. General principles and biotechnology, vol 1. Martinus Nijhoff, Dordrecht, pp 4–16

    Google Scholar 

  • Misra P, Chakrabarty D (2009) Clonal propagation of Rosa clinophylla Thory. through axillary bud culture. Sci Hortic 119:212–216

    Article  Google Scholar 

  • Nhut DT, Thi NN, Khiet BLT, Luan VQ (2008) Peptone stimulates in vitro shoot and root regeneration of avocado (Persea americana Mill.). Sci Hortic 115:124–128

    Article  CAS  Google Scholar 

  • Oertli JJ (1993) The mobility of boron in plants. Plant Soil 155–156:301–304

    Article  Google Scholar 

  • Ogasawara N (2003) Ventilation and light intensity during in vitro culture affect relative growth rate and photosynthate partitioning of Caladium plantlets after transplanting to ex vitro. Acta Hortic 616:143–149

    Google Scholar 

  • Ongaro V, Leyser O (2008) Hormonal control of shoot branching. J Exp Bot 59:67–74

    Article  PubMed  CAS  Google Scholar 

  • Pan MJ, Van Staden J (1998) The use of charcoal in in vitro culture. Plant Growth Regul 26:155–163

    Article  CAS  Google Scholar 

  • Pasqua G, Manes F, Monacelli B, Natale L, Anselmi S (2002) Effects of the culture medium pH and ion uptake in in vitro vegetative organogenesis in thin cell layers of tobacco. Plant Sci 162:947–955

    Article  CAS  Google Scholar 

  • Perěz C, Rodrĭguez R, Taměs R (1985) In vitro filbert (Corylus avellana L.) micropropagation from shoots and cotyledonary segments. Plant Cell Rep 4:137–139

    Article  Google Scholar 

  • Perez-Tornero O, Burgos L (2000) Different media requirements for micropropagation of apricot cultivars. Plant Cell Tissue Organ Cult 63:133–141

    Article  Google Scholar 

  • Piagnani C, Zocchi G, Mignani I (1996) Influence of Ca2+ and 6-benzyladenine on chestnut (Castanea sative Mill.) in vitro shoot-tip necrosis. Plant Sci 118:89–95

    Article  CAS  Google Scholar 

  • Raven JA (1977) H+ and Ca2+ in phloem and symplast: relation of relative immobility of the ions to the cytoplasmic nature of the transport paths. New Phytol 79:465–480

    Article  CAS  Google Scholar 

  • Redondo-Nieto M, Wilmot AR, EL-Hamdaoui A, Bonilla I, Bolaňos L (2003) Relationship between boron and calcium in the N2-fixing legume-rhizobia symbiosis. Plant Cell Environ 26:1905–1915

    Article  CAS  Google Scholar 

  • Rugini M (1984) In vitro propagation of some olive (Olea europaea sativa L.) cultivars with different root-ability, and medium development using analytical data from developing shoots and embryos. Sci Hortic 24:123–134

    Article  CAS  Google Scholar 

  • Sakakibara H (2004) Cytokinin biosynthesis and metabolism. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction, action, 3rd edn. Kluwer, London, pp 95–114

    Google Scholar 

  • Sha L, McCown BH, Peterson LA (1985) Occurrence and cause of shoot-tip necrosis in shoot cultures. J Am Soc Hortic Sci 110:631–634

    Google Scholar 

  • Shear CB (1975) Ca-related disorders of fruits and vegetables. HortScience 10:361–365

    CAS  Google Scholar 

  • Shelp BJ, Marentes E, Kitheka AM, Vivekanandan P (1995) Boron mobility in plants. Physiol Plant 94:356–361

    Article  CAS  Google Scholar 

  • Singha S, Townsend EC, Oberly GH (1990) Relationship between calcium and agar on vitrification and shoot-tip necrosis of quince (Cydonia oblonga Mill.) shoots in vitro. Plant Cell Tissue Organ Cult 23:135–142

    Article  Google Scholar 

  • Tang MP, Dela Fuente RK (1986a) The transport of indole-3-acetic acid in boron- and calcium-deficient sunflower hypocotyl segments. Plant Physiol 81:646–650

    Article  PubMed  CAS  Google Scholar 

  • Tang MP, Dela Fuente RK (1986b) Boron and calcium sites involved in indole-3-acetic acid transport in sunflower hypocotyl segments. Plant Physiol 81:651–655

    Article  PubMed  CAS  Google Scholar 

  • Thomas P (2000) Microcutting leaf area, weight and position on stock shoot influence root vigour, shoot growth and incidence of shoot tip necrosis in grape plants in vitro. Plant Cell Tissue Organ Cult 61:189–198

    Article  CAS  Google Scholar 

  • Thomas TD (2008) The role of activated charcoal in plant tissue culture. Biotechnol Adv 26:618–631

    Article  PubMed  CAS  Google Scholar 

  • Vieitez AM, Sanchez C, San-Jose C (1989) Prevention of shoot tip necrosis in shoot cultures of chestnut and oak. Sci Hortic 41:101–109

    Article  Google Scholar 

  • Wang H, van Staden J (2001) Establishment of in vitro cultures of tree peonies. S Afr J Bot 67:358–361

    CAS  Google Scholar 

  • Wang G, Römheld V, Li C, Bangerth F (2006) Involvement of auxin and CKs in boron deficiency induced changes in apical dominance of pea plants (Pisum sativum L.). J Plant Physiol 163:591–600

    Article  PubMed  CAS  Google Scholar 

  • Werbrouck SPO, van Der Jeugt B, Dewitte W, Prinsen E, van Onckelen HA, Debergh PC (1995) The metabolism of benzyladenine in S. floribundum schott ‘petite’ in relation to acclimatization problems. Plant Cell Rep 14:662–665

    Article  CAS  Google Scholar 

  • Wojcik P, Wojcik M (2003) Effects of boron fertilization on ‘Conference’ pear tree vigour, nutrition and fruit yield and storability. Plant Soil 256:413–421

    Article  CAS  Google Scholar 

  • Xing Z, Satchwell MF, Powell WA, Maynard C (1997) Micropropagation of American chestnut: increasing rooting rate and preventing shoot-tip necrosis. In Vitro Cell Dev Biol 33:43–48

    Article  Google Scholar 

  • Zocchi G, Mignani I (1995) Calcium physiology and metabolism in fruit trees. Acta Hortic 383:15–23

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Van Staden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bairu, M.W., Stirk, W.A. & Van Staden, J. Factors contributing to in vitro shoot-tip necrosis and their physiological interactions. Plant Cell Tiss Organ Cult 98, 239–248 (2009). https://doi.org/10.1007/s11240-009-9560-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-009-9560-8

Keywords

Navigation