Skip to main content
Log in

Secondary somatic embryogenesis versus caulogenesis from somatic embryos of Aesculus carnea Hayne.: developmental stage impact

  • Research Note
  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

Somatic embryos of red horse chestnut, derived from cultures maintained through repetitive somatic embryogenesis for a few years, were subjected to induction of secondary regeneration. The embryos were divided in four classes on the basis of their size (I-1, II-5, III-10 and IV-30 mm), and sub-cultured on MS media containing 0, 1, 5 or 10 μM kinetin (Kin) or benzyladenine (BA). The pathway of secondary regeneration, somatic embryogenesis or caulogenesis, depended on the primary somatic embryo (PSE) stage of development. The embryogenic capacity declined and bud-forming capacity increased with the degree of PSE maturity. The PSE of the Classes I and II produced only secondary somatic embryos (SSE), the Class III PSE formed both SSE and adventitious buds, whereas the Class IV PSE developed almost solely adventitious buds. The process of secondary somatic embryogenesis was most effective in the Class II PSE at 5 μM BA, and the process of adventive organogenesis was most effective in the Class IV PSE at 10 μM BA. On plant growth regulator (PGR)-free medium, PSE of A. carnea followed the same pattern of adventive regeneration, as those cultured on cytokinin containing media. The cytokinins only amplified the response, in a certain range of concentrations. BA promoted bud induction at a much higher rate than Kin, while their embryogenic effect was similar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AB:

Adventitious buds

BA:

6-Benzylaminopurine

BFC:

Bud-forming capacity

2,4-D:

2,4-Dichlorophenoxyacetic acid

EFC:

Embryo-forming capacity

Kin:

6-Furfurylaminopurine

PGR:

Plant growth regulator

PSE:

Primary somatic embryos

SE:

Somatic embryos

SSE:

Secondary somatic embryos

References

  • Arya S, Kalia RK, Arya ID (2000) Induction of somatic embryogenesis in Pinus roxburghii Sarg. Plant Cell Rep 19:775–780. doi:10.1007/s002990000197

    Article  CAS  Google Scholar 

  • Budimir S (2003) Developmental histology of organogenic and embryogenic tissue in Picea omorica culture. Biol Plant 47:467–470. doi:10.1023/B:BIOP.0000023898.83886.7d

    Article  Google Scholar 

  • Ćalić D, Zdravković-Korać S, Pemac D, Radojević L (2003) Efficient haploid induction in microspore suspension culture of Aesculus hippocastanum and karyotype analysis. Biol Plant 47:289–292. doi:10.1023/B:BIOP.0000022268.34748.d8

    Google Scholar 

  • Ćalić D, Zdravković-Korać S, Radojević L (2005) Secondary embryogenesis in androgenic embryo cultures of Aesculus hippocastanum L. Biol Plant 49:435–438. doi:10.1007/s10535-005-0023-8

    Article  Google Scholar 

  • Centeno ML, Rodríguez R, Berros B, Rodríguez A (1997) Endogenous hormonal content and somatic embryogenic capacity of Corylus avellana L. cotyledons. Plant Cell Rep 17:139–144. doi:10.1007/s002990050367

    Article  CAS  Google Scholar 

  • Charrière F, Hahne G (1998) Induction of embryogenesis versus caulogenesis on in vitro cultured sunflower (Helianthus annuus L.) immature zygotic embryos: role of plant growth regulators. Plant Sci 137:63–71. doi:10.1016/S0168-9452(98)00128-9

    Article  Google Scholar 

  • Ebrahimie E, Naghavi MR, Hosseinzadeh A, Behamta MR, Mohammadi-Dehcheshmeh M, Sarrafi A et al (2007) Induction and comparison of different in vitro morphogenesis pathways using embryo of cumin (Cuminum cyminum L.) as a model material. Plant Cell Tissue Organ Cult 90:293–311. doi:10.1007/s11240-007-9269-5

    Article  Google Scholar 

  • Fernández-Guijarro B, Celestino C, Toribio M (1995) Influence of external factors on secondary embryogenesis and germination in somatic embryos from leaves of Quercus suber. Plant Cell Tissue Organ Cult 41:99–106. doi:10.1007/BF00051578

    Article  Google Scholar 

  • Gaj MD (2004) Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidipsis thaliana (L.) Heynh. Plant Growth Regul 43:27–47. doi:10.1023/B:GROW.0000038275.29262.fb

    Article  CAS  Google Scholar 

  • Kiss J, Heszky LE, Kiss E, Gyulai G (1992) High efficiency adventive embryogenesis on somatic embryos of anther, filament and immature proembryo origin in horse-chestnut (Aesculus hippocastanum L.) tissue culture. Plant Cell Tissue Organ Cult 30:59–64. doi:10.1007/BF00040001

    Article  CAS  Google Scholar 

  • Komamine A, Kawahara R, Matsumoto M, Sunabori S, Toya T, Fujiwara A et al (1992) Mechanisms of somatic embryogenesis in cell cultures—physiology, biochemistry and molecular biology. In Vitro Cell Dev Biol Plant 28:11–14. doi:10.1007/BF02632185

    Google Scholar 

  • Murahige T, Skoog F (1962) A revised medium for rapid growth and bioassys with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  Google Scholar 

  • Nair RR, Gupta SD (2006) High-frequency plant regeneration through cyclic secondary somatic embryogenesis in black pepper (Piper nigrum L.). Plant Cell Rep 24:699–707. doi:10.1007/s00299-005-0016-2

    Article  PubMed  CAS  Google Scholar 

  • Park YS, Lelu-Walter MA, Harvengt L, Trontin JF, MacEachron I, Klimaszewska K et al (2006) Initiation of somatic embryogenesis in Pinus banksiana, P. strobus, P. pinaster and P. sylvestris at three laboratories in Canada and France. Plant Cell Tissue Organ Cult 86:87–101. doi:10.1007/s11240-006-9101-7

    Article  Google Scholar 

  • Puigderrajols P, Celestino C, Suils M, Toribio M, Molinas M (2000) Histology of organogenic and embryogenic response in cotyledons of somatic embryos of Quercus suber L. Int J Plant Sci 161:353–362. doi:10.1086/314266

    Article  PubMed  Google Scholar 

  • Radojević L, Đorđević N, Tucić B (1989) In vitro induction of pollen embryos and plantlets in Aesculus carnea Hayne through another culture. Plant Cell Tissue Organ Cult 17:21–26. doi:10.1007/BF00042278

    Google Scholar 

  • Ramarosandratana AV, Van Staden J (2003) Tissue position, explant orientation and naphthaleneacetic acid (NAA) affect initiation of somatic embryos and callus proliferation in Norway spruce (Picea abies). Plant Cell Tissue Organ Cult 74:249–255. doi:10.1023/A:1024022226381

    Article  CAS  Google Scholar 

  • Tautorus TE, Atree SM, Fowke LC, Dunstan DI (1990) Somatic embryogenesis from immature and mature zygotic embryos, and embryo regeneration from protoplast in black spruce (Picea mariana Mill.). Plant Sci 67:115–124. doi:10.1016/0168-9452(90)90057-U

    Article  Google Scholar 

  • von Arnold S, Sabala I, Bozhkov P, Kyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tissue Organ Cult 69:233–249. doi:10.1023/A:1015673200621

    Article  Google Scholar 

Download references

Acknowledgements

The Ministry of Science and Environment Protection of Serbia, Contract No. 143026B, supported this research. The authors are grateful to Dr. Miloš Bokorov, University of Novi Sad, Serbia, for scanning electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Zdravković-Korać.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zdravković-Korać, S., Ćalić-Dragosavac, D., Uzelac, B. et al. Secondary somatic embryogenesis versus caulogenesis from somatic embryos of Aesculus carnea Hayne.: developmental stage impact. Plant Cell Tiss Organ Cult 94, 225–231 (2008). https://doi.org/10.1007/s11240-008-9399-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-008-9399-4

Keywords

Navigation