Skip to main content
Log in

Effect of Acid–Base Characteristics of Zeolite Catalysts on Oxidative Dehydrogenation of Propane with Carbon Dioxide

  • Published:
Theoretical and Experimental Chemistry Aims and scope

The peculiarities of propane dehydrogenation with carbon dioxide over zeolite catalysts of different structural types, in particular, BEA with incorporated Zn, Ga (Ta, Nb) heteroelements have been analyzed. The role of CO2 as an oxidant, the effect of acid–base characteristics on propylene selectivity and yield, the stability of catalyst operation, and the routes of activation of reagents on acid–base sites of the surface are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. I. Amghizar, L. A. Vandewalle, K. M. Van Geem, and G. B. Marin, Engineering, 3, 171-178 (2017).

    Article  CAS  Google Scholar 

  2. T. Otroshchenko, G. Jiang, V. A. Kondratenko, et al., Chem. Soc. Rev., 50, 473-527 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Y. Gambo, S. Adamu, G. Tanimu, et al., Appl. Catal. A., 623, 118273 (2021), https://doi.org/https://doi.org/10.1016/j.apcata.2021.118273.

  4. Z. P. Hu, D. Yang, Z. Wang, and Z. Y. Yuan, Chinese J. Catal., 40, 1233-1254 (2019).

    Article  CAS  Google Scholar 

  5. E. Gomez, B. Yan, S. Kattel, J. G. Chen, Nat. Rev. Chem., 3, 638-649 (2019).

    Article  CAS  Google Scholar 

  6. J. J. H. B. Sattler, J. Ruiz-Martinez, E. Santillan-Jimenez, and B. M. Weckhuysen, Chem. Rev., 114, 10613-10653 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. S. B. Wang and Z. H. Zhu, Energy Fuels, 18, 1126-1139 (2004).

    Article  CAS  Google Scholar 

  8. P. Sazama, N. K. Sathu, E. Tabor, et al., J. Catal., 299, 188-203 (2013).

    Article  CAS  Google Scholar 

  9. P. Michorczyk, K. Zenczak-Tomera, B. Michorczyk, et al., J. CO2 Util., 36, 54-63 (2020).

  10. M. A. Atanga, F. Rezaei, A. Jawad, et al., Appl. Catal. B., 220, 429-445 (2018).

    Article  CAS  Google Scholar 

  11. Y. Zhang, Y. Li, J. Gu, et al., Korean J. Chem. Eng., 35, 1932-1940 (2018).

    Article  CAS  Google Scholar 

  12. H. Thakkar, S. Eastman, A. Al-Mamoori, et al., ACS Appl. Mater. Interfaces, 9, 7489-7498 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. T. Armaroli, L. J. Simon, M. Digne, et al., Appl. Catal. A., 306, 78-84 (2006).

    Article  CAS  Google Scholar 

  14. P. Michorczyk, J. Ogonowski, and K. Zenczak, J. Mol. Catal. A., 349, 1-12 (2011).

    Article  CAS  Google Scholar 

  15. K. Nakagawa, C. Kajita, K. Okumura, et al., J. Catal., 203, 87-93 (2001).

    Article  CAS  Google Scholar 

  16. P. Sun, G. Siddiqi, M. Chi, and A. T. Bell, J. Catal., 274, 192-199 (2010).

    Article  CAS  Google Scholar 

  17. G. Siddiqi, P. Sun, V. Galvita, and A.T. Bell, J. Catal., 274, 200-206 (2010).

    Article  CAS  Google Scholar 

  18. P. Sun, G. Siddiqi, W. C. Vining, et al., J. Catal., 282, 165-174 (2011).

    Article  CAS  Google Scholar 

  19. L. Rodriguez, D. Romero, D. Rodriguez, et al., Appl. Catal. A., 373, 66-70 (2010).

    Article  CAS  Google Scholar 

  20. K. J. Chao, A. C. Wei, H. C. Wu, and J. F. Lee, Microporous Mesoporous Mater., 35-36, 413-424 (2000).

  21. E. Nowicka, C. Reece, S. Althahban, et al., ACS Catal., 8, 3454-3468 (2018).

    Article  CAS  Google Scholar 

  22. P. Michorczyk, P. Pietrzyk, and J. Ogonowski, Microporous Mesoporous Mater., 161, 56-66 (2012).

    Article  CAS  Google Scholar 

  23. M. Chen, J. Xu, Y.-M. Liu, et al., Appl. Catal. A., 377, 35-41 (2010).

    Article  CAS  Google Scholar 

  24. B. Xu, B. Zheng, W. Hua, et al., J. Catal., 239, 470-477 (2006).

    Article  CAS  Google Scholar 

  25. P. Michorczyk, P. Kustrowski, L. Chmielarz, and J. Ogonowski, React. Kinet. Catal. Lett., 82, 121-130 (2004).

    Article  CAS  Google Scholar 

  26. X. Shi, S. Ji, K. Wang, and C. Li, Energy Fuels, 22, 3631-3638 (2008).

    Article  CAS  Google Scholar 

  27. S. Kattel, W. Yu, X. Yang, et al., Angew. Chem. Int. Ed., 55, 1-7 (2016).

    Article  CAS  Google Scholar 

  28. K. Takehira, Y. Ohishi, T. Shishido, et al., J. Catal., 224, 404-416 (2004).

    Article  CAS  Google Scholar 

  29. P. Michorczyk, K. Ze, R. Niekurzak, and J. Ogonowski, Polish J. Chem. Technol., 14, 77-82 (2012).

    Google Scholar 

  30. I. Takahara and M. Saito, Chem. Lett., 25, 973-974 (1996).

    Article  Google Scholar 

  31. I. Takahara, W. Chang, N. Mimura, and M. Saito, Catal. Today, 45, 55-59 (1998).

    Article  CAS  Google Scholar 

  32. M. Kocon, P. Michorczyk, and J. Ogonowski, Catal. Lett., 101, 53-57 (2005).

    Article  CAS  Google Scholar 

  33. Q. Zhu, M. Takiguchi, T. Setoyama, et al., Catal. Lett., 141, 670-677 (2011).

    Article  CAS  Google Scholar 

  34. P. Michorczyk, J. Ogonowski, and M. Niemczyk, Appl. Catal. A., 374, 142-149 (2010).

    Article  CAS  Google Scholar 

  35. Y. Ren, F. Zhang, W. Hua, et al., Catal. Today, 148, 316-322 (2009).

    Article  CAS  Google Scholar 

  36. B. J. Xu, B. Zheng, W. M. Hua, et al., J. Catal., 239, 470-477 (2006).

    Article  CAS  Google Scholar 

  37. B. J. Xu, B. Zheng, W. M. Hua, et al., Stud. Surf. Sci. Catal., 170, 1072-1079 (2007).

    Article  Google Scholar 

  38. Y. Ren, J. Wang, W. Hua, et al., J. Ind. Eng. Chem., 18, 731-736 (2012).

    Article  CAS  Google Scholar 

  39. K. Chalupka, C. Thomas, Y. Millot, et al., J. Catal., 305, 46-55 (2013).

    Article  CAS  Google Scholar 

  40. N. S. Gnep, J. Y. Doyemet, A. M. Seco, et al., Appl. Catal., 43, 155-166 (1988).

    Article  CAS  Google Scholar 

  41. P. Meriaudeau and C. Naccache, J. Mol. Catal., 50, L7-L10 (1989).

    Article  CAS  Google Scholar 

  42. G. L. Price and V. Kanazirev, J. Catal., 126, 267-278 (1990).

    Article  CAS  Google Scholar 

  43. G. D. Meitzner, E. Iglesia, J. E. Baumgartner, and E. S. Huang, J. Catal., 140, 209-225 (1993).

    Article  CAS  Google Scholar 

  44. N. S. Nesterenko, O. A. Ponomoreva, V. V. Yuschenko, et al., Appl. Catal. A., 254, 261-272 (2003).

    Article  CAS  Google Scholar 

  45. M. Chen, J. Xu, F. Su, et al., J. Catal., 256, 293-300 (2008).

    Article  CAS  Google Scholar 

  46. C. Chen, Z. Hu, J. Ren, et al., ChemCatChem., 11, 868-877 (2019).

    Article  CAS  Google Scholar 

  47. C. Chen, Z. P. Hu, J. T. Ren, et al., Mol. Catal., 476, 110508 (2019).

    Article  CAS  Google Scholar 

  48. J. Liu, N. He, Z. Zhang, et al., ACS Catal., 11, 2819-2830 (2021).

    Article  CAS  Google Scholar 

  49. D. Zhao, X. Tian, D. E. Doronkin, et al., Nature, 599, 234-238 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. D. Zhao, Y. Li, S. Han, et al., Science, 13, 269-276 (2019).

    CAS  Google Scholar 

  51. Y. Zhang, Y. Zhou, L. Huang, et al., Chem. Eng. J., 270, 352-361 (2015).

    Article  CAS  Google Scholar 

  52. L. Xie, Y. Chai, L. Sun, et al., J. Energy Chem., 57, 92-98 (2021).

    Article  Google Scholar 

  53. L. Qi, M. Babucci, Y. Zhang, et al., J. Am. Chem. Soc., 143, 21364-21378 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. C. Huang, D. Han, L. Guan, et al., Fuel, 307, 121790 (2022).

    Article  CAS  Google Scholar 

  55. Q. Sun, N. Wang, Q. Fan, et al., Angew. Chem. Int. Ed., 59, 19450-19459 (2020).

    Article  CAS  Google Scholar 

  56. S. Dzwigaj, M. J. Peltre, P. Massiani, et al., Chem. Commun., 87-88 (1998).

  57. S. Dzwigaj, Y. Millot, and M. Che, Catal. Lett., 135, 169-174 (2010).

    Article  CAS  Google Scholar 

  58. S. Dzwigaj, Y. Millot, C. Methivier, and M. Che, Microporous Mesoporous Mater., 130, 162-166 (2010).

    Article  CAS  Google Scholar 

  59. N. O. Popovych, P. I. Kyriienko, S. O. Soloviev, et al., Microporous Mesoporous Mater., 226, 10-18 (2016).

    Article  CAS  Google Scholar 

  60. S. M. Orlyk, M. R. Kantserova, V. I. Chedryk, et al., Theor. Exp. Chem., 56, No. 6, 387-395 (2021).

    Article  CAS  Google Scholar 

  61. S. M. Orlyk, M. R. Kantserova, V. I. Chedryk, et al., J. Porous Mater., 28, 1511-1522 (2021).

    Article  CAS  Google Scholar 

  62. N. Al-Yassir, M. N. Akhtar, S. Al-Khattaf, J. Porous Mater., 19, 943-960 (2012).

    Article  CAS  Google Scholar 

  63. E. P. Parry, J. Catal., 2, 371-379 (1963).

    Article  CAS  Google Scholar 

  64. W. G. Kim, J. So, S. W. Choi, et al., Chem. Mater., 29, 7213-7222 (2017).

    Article  CAS  Google Scholar 

  65. Y. Cheng, T. Lei, C. Miao, et al., Microporous Mesoporous Mater., 268, 235-242 (2018).

    Article  CAS  Google Scholar 

  66. H. Nur, Z. Ramli, J. Efendi, et al., Catal. Commun., 12, 822-825 (2011).

    Article  CAS  Google Scholar 

  67. M. L. Martinez, M. B. G. Costa, and O. A. Anunziata, Nanotechnology, 30, No. 6, 065703 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. J. Zhang, O. Vesely, M. V. Shamzhy, et al., Catal. Today, 346, 110-115 (2019).

    Article  CAS  Google Scholar 

  69. P. I. Kyriienko, O. V. Larina, N. O. Popovych, et al., J. Mol. Catal. A., 424, 27-36 (2016).

    Article  CAS  Google Scholar 

  70. S. Dzwigaj, N. Popovych, P. Kyriienko, et al., Microporous Mesoporous Mater., 182, 16-24 (2013).

    Article  CAS  Google Scholar 

  71. R. Fricke, H. Kosslick, and M. Richter, Chem. Rev., 100, 2303-2406 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. F. Tielens, T. Shishido, and S. Dzwigaj, J. Phys. Chem. C., 114, 3140-3147 (2010).

    Article  CAS  Google Scholar 

  73. F. Tielens, T. Shishido, and S. Dzwigaj, J. Phys. Chem. C., 114, 9923-9930 (2010).

    Article  CAS  Google Scholar 

  74. O. V. Larina, P. I. Kyriienko, S. O. Soloviev, et al., Theor. Exp. Chem., 52, No. 1, 51-56 (2016).

    Article  CAS  Google Scholar 

  75. M. W. Schreiber, C. P. Plaisance, M. Baumgartl, et al., J. Am. Chem. Soc., 140, 4849-4859 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. G. T. Palomino, J. J. C. Pascual, M. R. Delgado, et al., Mater. Chem. Phys., 85, 145-150 (2004).

    Article  CAS  Google Scholar 

  77. O. Sanchez-Galofre, Y. Segura, and J. Perez-Ramirez, J. Catal., 249, 123-133 (2007).

    Article  CAS  Google Scholar 

  78. Y. Gambo, S. Adamu, A. A. Abdulrasheed, et al., Appl. Catal. A., 609, 117914 (2021), https://doi.org/https://doi.org/10.1016/j.apcata.2020.117914.

  79. Y. Liu, Z. H. Li, J. Lu, and K. Fan, J. Phys. Chem. C., 112, 20382-20392 (2008).

    Article  CAS  Google Scholar 

  80. C. Coperet, Chem. Rev., 110, 656-680 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. G. Fu, X. Xu, X. Lu, and H.-L. Wan, J. Phys. Chem. B., 109, 6416-6421 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. K. Alexopoulos, M. F. Reyniers, and G. B. Marin, J. Catal., 289, 127-139 (2012).

    Article  CAS  Google Scholar 

  83. K. Chen, A. T. Bell, and E. Iglesia, J. Catal., 209, 35-42 (2002).

    Article  CAS  Google Scholar 

  84. Y.-J. Du, Z. H. Li, and K.-N. Fan, J. Mol. Catal. A., 379, 122-138 (2013).

    Article  CAS  Google Scholar 

  85. Z. Zhao, C.-C. Chiu, and J. Gong, Chem. Sci., 6, 4403-4425 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. K. C. Szeto, Z. R. Jones, and N. Merle, ACS Catal., 8, 7566-7577 (2018).

    Article  CAS  Google Scholar 

  87. R. Gounder and E. Iglesia, J. Catal., 277, 36-45 (2011).

    Article  CAS  Google Scholar 

  88. S. Mallikarjun Sharada, P. M. Zimmerman, A. T. Bell, and M. Head-Gordon, J. Phys. Chem. C., 117, 12600-12611 (2013).

    Article  CAS  Google Scholar 

  89. G. A. Olah, G. K. S. Prakash, and J. Sommer, Superacids, John Wiley & Sons, New York (1985).

    Google Scholar 

  90. D. Mukherjee, S.-E. Park, and B. M. Reddy, J. CO2 Util., 16, 301-312 (2016).

  91. M. B. Ansari and S.-E. Park, Energy Environ. Sci., 5, 9419-9437 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Kapran.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 58, No. 2, pp. 104-114, March-April, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapran, A.Y., Orlyk, S.M. Effect of Acid–Base Characteristics of Zeolite Catalysts on Oxidative Dehydrogenation of Propane with Carbon Dioxide. Theor Exp Chem 58, 118–129 (2022). https://doi.org/10.1007/s11237-022-09729-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-022-09729-2

Keywords

Navigation