Skip to main content
Log in

A compact asymmetrically slotted antipodal Vivaldi antenna for MIMO imaging systems

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In this paper, we propose a Compact Asymmetrically Slotted Antipodal Vivaldi Antenna (CAS-AVA) design for MIMO imaging systems. The structure has the ability to extend the antenna bandwidth in low-end frequencies achieving a fractional bandwidth of 123.32 % (4.743–20) GHz. Good results are obtained in term of return loss, radiation pattern and gain. A time-domain study has been also performed to characterize the antenna behavior in case of an UWB pulse is used. To further validate our design, an application for MIMO imaging system is also proposed and evaluated. The antenna is used as the MIMO array element, thus forming a compact array and enabling to construct an optimal topology which improve significantly the microwave imaging quality by generating high-resolution images. The results demonstrate that the proposed antenna is a good candidate for microwave MIMO imaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Notes

  1. Federal Communications Commission.

References

  1. Chouiti, S. M., Merad, L., Meriah, S. M., Derraz, F., & Raimundo, X. (2018). International journal of numerical modelling: Electronic networks. Devices and Fields, 31(5), e2338. https://doi.org/10.1002/jnm.2338

    Article  Google Scholar 

  2. Anadol, E., Seker, I., Camlica, S., Tankut, O. T., Koc, S., Alatan, L., Oktem, F., & Civi, O. A. (2018). Radar Sensor Technology XXII (Vol. 10633, p. 106331). International Society for Optics and Photonics. https://doi.org/10.1117/12.2314454

    Book  Google Scholar 

  3. Tahar, Z., Derobert, X., & Benslama, M. (2018). An ultra-wideband modified Vivaldi antenna applied to through the ground and wall imaging. Progress In Electromagnetics Research C, 86, 12.

  4. Zhuge, X., & Yarovoy, A. G. (2011). A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection. IEEE Transactions on Geoscience and Remote Sensing, 49(1), 509. https://doi.org/10.1109/TGRS.2010.2053038

    Article  Google Scholar 

  5. Atteia, G. E., & Shaalan, A. A. (2007). Progress in electromagnetics research. PIER, 71, 211.

    Article  Google Scholar 

  6. Gibson, P. J. The Vivaldi Aerial. 9th European Microwave Conf. Proc. Brighton, (1979) pp. 101-105.

  7. Gazit, E. (1988). Improved design of Vivaldi antenna. In IEEE Proc. Microwave Antennas Propagation, vol. 135, pp. 89–92.

  8. Hanbay, E., Aydemir, M.E. (2019). In 2019 9th International Conf. on Recent Advances in Space Technologies (RAST). (IEEE), pp. 491–495. https://doi.org/10.1109/RAST.2019.8767888

  9. Gorai, A., Karmakar, A., Pal, M., & Ghatak, R. (2015). A super wideband Chebyshev tapered antipodal Vivaldi antenna. AEU - International Journal of Electronics and Communications, 69(9), 1328. https://doi.org/10.1016/j.aeue.2015.05.017

    Article  Google Scholar 

  10. Hasim, N. S. B., Ping, K. A. H., Islam, M. T., Mahmud, M. Z., Sahrani, S., Mat, D. A. A., & Zaidel, D. N. A. (2019). A slotted UWB antipodal Vivaldi antenna for microwave imaging applications. Progress In Electromagnetics Research M, 80, 35. https://doi.org/10.2528/PIERM18121201

    Article  Google Scholar 

  11. Pandey, G., Verma, H., & Meshram, M. (2015). Compact antipodal Vivaldi antenna for UWB applications. Electronics Letters, 51(4), 308. https://doi.org/10.1049/el.2014.3540

    Article  Google Scholar 

  12. De Oliveira, A. M., Perotoni, M. B., Kofuji, S. T., & Justo, J. F. (2015). A palm tree antipodal Vivaldi antenna with exponential slot edge for improved radiation pattern. IEEE Antennas and Wireless Propagation Letters, 14, 1334. https://doi.org/10.1109/LAWP.2015.2404875

    Article  Google Scholar 

  13. Moosazadeh, M., Kharkovsky, S., Esmati, Z., & Samali, B. (2016). UWB elliptically-tapered antipodal Vivaldi antenna for microwave imaging applications. In 2016 IEEE-APS Topical Conf. on Antennas and Propagation in Wireless Communications (APWC). pp. 102–105. https://doi.org/10.1109/APWC.2016.7738131

  14. Oliveira, A. M. D., Justo, J. F., Perotoni, M. B., Kofuji, S. T., Neto, A. G., Bueno, R. C., & Baudrand, H. (2017). A high directive K och fractal V ivaldi antenna design for medical near field microwave imaging applications. Microwave and Optical Technology Letters, 59(2), 337. https://doi.org/10.1002/mop.30293

    Article  Google Scholar 

  15. Moosazadeh, M., Kharkovsky, S., Case, J. T., & Samali, B. (2017). UWB antipodal vivaldi antenna for microwave imaging of construction materials and structures. Microwave and Optical Technology Letters, 59(6), 1259. https://doi.org/10.1002/mop.30509

    Article  Google Scholar 

  16. Studio, C. M. (2014). CST Microwave Studio - Science topic. CST Inc.

    Google Scholar 

  17. Arashpreet, A. K., & Sohia, K. (2021). Triple band-stop characteristics from an aperture coupled modified Pythagorean tree fractal-based UWB-MIMO antenna integrated with complementary hexagonal spiral defected ground structure. AEU - International Journal of Electronics and Communications, 137, 153805. https://doi.org/10.1016/j.aeue.2021.153805

    Article  Google Scholar 

  18. Mighani, M., & Akbari, M. (2014). New UWB monopole planer antenna with dual band notched. Progress In Electromagnetics Research C, 52, 153. https://doi.org/10.2528/PIERC14053002

    Article  Google Scholar 

  19. Mehdipour, A., Mohammadpour-Aghdam, K., & Faraji-Dana, R. (2007). Simultaneous time-frequency modeling of ultra-wideband antennas by twodimensional hermite processing. Progress In Electromagnetics Research, 77, 85. https://doi.org/10.2528/PIER07072904

  20. Quintero, G., Zurcher, J., & Skrivervik, A. K. (2011). System fidelity factor: A new method for comparing UWB antennas. IEEE Transactions on Antennas and Propagation, 59(7), 2502. https://doi.org/10.1109/TAP.2011.2152322

    Article  Google Scholar 

  21. Sheng, H., Orlik, P., Haimovich, A., Cimini, L., & Zhang, J. (2003). In IEEE International Conf. on Communications, 2003. ICC ’03., vol. 1 (IEEE), vol. 1, pp. 738–742. https://doi.org/10.1109/ICC.2003.1204271

  22. Akhoondzadeh-Asl, A. A. L., Fardis, M., & Dadashzadeh, G. (2008). Progress in electromagnetics research. PIER, 80, 337. https://doi.org/10.2528/PIER07120202

Download references

Acknowledgements

The authors would like to gratefully acknowledge Pr. FEHAM Mohamed, from STIC laboratory of the University of Tlemcen, for his technical support in providing the experimental data.

Funding

This research was supported by the Directorate-General of scientific research and technological development (Project no. 22/Univ.Tlemcen/DGRSDT: “Development of a buried object detection system using microwave imaging”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djamila Ziani.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziani, D., Meriah, S.M., Derraz, F. et al. A compact asymmetrically slotted antipodal Vivaldi antenna for MIMO imaging systems. Telecommun Syst 83, 267–275 (2023). https://doi.org/10.1007/s11235-023-01013-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-023-01013-5

Keywords

Navigation