Skip to main content
Log in

UWB Antipodal Vivaldi antenna with higher radiation performances using metamaterials

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, an Ultra-Wide-Band (UWB) Antipodal Vivaldi antenna with higher radiation performances is proposed. Zero-index metamaterials units with Meander-line shape are placed on the antenna aperture to improve the antenna directivity. An increase of 4 dB in the gain with equal beamwidths in the E and H planes is achieved at different frequencies. The antenna covers 142.8% bandwidth with input match better than − 10 dB from 1.3 GHz to 12 GHz. It has practically unchanged radiation patterns over the operating bandwidth where the gain varies from 9.5 dB at 5 GHz–12.4 dB at 10 GHz. Measurement results show satisfactory agreement with simulation. Therefore, loading with metamaterials makes the VIVALDI antenna directivity frequency independent. This UWB antenna is eventually a good candidate for wireless communications and radar applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H.A. Majid, M.K.A. Rahim, M.R. Hamid et al., Band notched reconfigurable CPW-fed UWB antenna. Appl. Phys. A 122, 347 (2016)

    Article  ADS  Google Scholar 

  2. R. Herzi, H. Zairi, A. Gharsallah, Reconfigurable Vivaldi antenna with improved gain for UWB applications. Microw. Opt. Technol. Lett. 58, 2 (2016)

    Article  Google Scholar 

  3. R. Herzi, H. Zairi, A. Gharsallah, Antipodal Vivaldi antenna array with high gain and reduced mutual coupling for UWB applications”, In: 16th International conference on sciences & techniques of automatic control & Computer Engineering (STA 2015)

  4. N. Ojaroudi, Y. Ojaroudi, S. Ojaroudi, Compact ultra-wideband monopole antenna with enhanced bandwidth and dual band-stop properties. Int. J. RF Microw. Comput. Aided Eng. 25, 4 (2015)

    Article  Google Scholar 

  5. W. Mazhar, D. Klymyshyn, A Qureshi, Log periodic slot-loaded circular vivaldi antenna for 5–40 GHz UWB applications. Microw. Opt. Technol. Lett. 59, 1 (2017)

    Article  Google Scholar 

  6. P.J. Gibson, The Vivaldi aerial. In: 9th European microwave conf., (1979), pp. 101–105

  7. E. Gazit, Improved design of the Vivaldi antenna. Proc. Inst. Elect. Eng. 135, 89–92 1988

    Google Scholar 

  8. S. Sugawara, Y. Maita, K. Adachi, K. Mori, K. Mizuno, Characteristics of an mm-wave tapered slot antenna with corrugated edges, IEEE MTT-S International Microwave Symposium Digest (Baltimore, MD, 1998), pp. 533–536

  9. E.W. Reid, L. Ortiz-Balbuena, A. Ghadiri et al., A 324-elementVivaldi antenna array for radio astronomy instrumentation. IEEE Trans. Instrum. Meas. 61, 241–250 (2012)

    Article  Google Scholar 

  10. Y.-W. Wang, G.M. Wang, B.-F. Zong, Directivity improvement of Vivaldi antenna using double-slot structure. IEEE Antennas Wirel. Propag. Lett. 12, 1380–1383 (2013)

    Article  ADS  Google Scholar 

  11. P. Zubair Akhter, Kumar, M.J. Akhtar, Sub-Surface microwave imaging using four-slot Vivaldi antenna with improved directivity. Frequenz 71(1–2), 19–28 (2017)

    Article  ADS  Google Scholar 

  12. B.N. Zubair, A. Abhijith, M.J. Akhtar, Hemisphere lens loaded Vivaldi antenna for time domain microwave imaging of concealed objects. J. Electromagn. Waves Appl. 30(9), 1183–1197 (2016)

    Article  Google Scholar 

  13. M. Oliveira De, M.B. Perotoni, S.T. Kofuji, J.F. Justo, A palm tree Antipodal Vivaldi antenna with exponential slot edge for improved radiation pattern. IEEE Ant. Wirel. Propag. Lett. 14, 1334–1337 (2015)

    Article  ADS  Google Scholar 

  14. X.-X. Li, B.-J. Lu, L. Sang, Y.-M. Zhang, G.-Q. Lv, Radiation enhanced Vivaldi antenna with shaped dielectric cover. Microw. Opt. Technol. Lett. 59, 1975–1983 (2017)

    Article  Google Scholar 

  15. R. Salhi, Dual-band microstrip patch antenna based on metamaterial refractive surface. Appl. Phys. A (2017)

  16. M. Sun, Z.N. Chen, X. Qing, Gain enhancement of 60-GHz antipodal tapered slot antenna using zero-index metamaterial. IEEE Trans. Ant. Propag. 61, 1741–1746 (2013)

    Article  ADS  Google Scholar 

  17. B. Zhou, T.J. Cui, Directivity enhancement to Vivaldi antennasusing compactly anisotropic zero-index metamaterials. IEEE Ant.Wirel. Propag. Lett. 10, 326–329 (2011)

    Article  ADS  Google Scholar 

  18. M. Bhaskarand et al., Gain enhancement of the Vivaldi antenna with band Notch Characteristics Using Zero-Index Metamaterial, Microw. Opt. Technol. Lett. 58, 1 (2016)

    Article  Google Scholar 

  19. G.K. Pandey et al., Meander-line-based inhomogeneous anisotropic artificial material for gain enhancement of UWB Vivaldi antenna. Appl. Phys. A 122, 134 (2016)

    Article  ADS  Google Scholar 

  20. J.G. Joshi, S.S. Pattnaik, S. Devi, M.R. Lohokare, Frequency switching of electrically small antenna patch antenna using metamaterial loading. Indian J. of Radio Sp. Phys. 40(3), 159–165 (2011)

    Google Scholar 

  21. I. Olli, L. Stanislav, S.A. Tretyakov, A stepwise nicolson–ross–weir- based material parameter extraction method. IEEE Ant. Wirel. Propag. Lett. 10, 1295–1298 2011

    Article  Google Scholar 

  22. J. Shin, D.H. Schaubert, A parameter study of stripline-fed Vivaldi notch-antenna arrays. IEEE Trans. Anten. Propag. 47, 879–886 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabiaa Herzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boujemaa, MA., Herzi, R., Choubani, F. et al. UWB Antipodal Vivaldi antenna with higher radiation performances using metamaterials. Appl. Phys. A 124, 714 (2018). https://doi.org/10.1007/s00339-018-2132-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2132-1

Navigation