Skip to main content
Log in

A Fermi-Dirac Function-Based Antipodal Vivaldi Antenna for mmWave Applications

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

This research article presents a design of a wideband antipodal Vivaldi antenna (AVA) to achieve broadband performances in the millimeter wave range. The design provides excellent fractional bandwidth of 186.54% which ranges from 10.45 to above 300 GHz. It is a compact antenna that is designed by using the Fermi-Dirac function. At first, the Fermi-Dirac function is used to design an outer exponential curve. The inner curve is the quarter part of a circle. A simple but effective rectangular shaped corrugations enhancement method is also incorporated in AVA for bandwidth and gain improvement. The designed AVA is fabricated on Roger’s RT/duroid 5880 substrate and its size is 30 mm \(\times\) 12 mm \(\times\) 0.5 mm. The corrugations improve the gain of simple Fermi-Dirac function-based AVA up to 6.76 dBi and it ranges from 7.2 to 13.1 dBi. Also, it provides a stable and an improved efficiency which is in the range of 91.5 to 97.85%. The fabricated antenna is experimentally tested to validate the simulated results. Both results are in good agreement with each other. Further, the functionality of the proposed AVA is almost stable over the desired frequency range. The designed compact AVA is very wideband antenna which gives stable radiation patterns and high gain. Hence, it is the best choice for various millimeter wave applications like 5G, radar, satellite, and medical imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Mohammad Alibakhshikenari, Bal S. Virdee, Chan H. See, Pancham Shukla, Shahram Salekzamankhani, Raed A. Abd-Alhameed, Francisco Falcone, and Ernesto Limiti. Study on improvement of the performance parameters of a novel 0.410.47 THz on-chip antenna based on metasurface concept realized on 50\(\mu\)m GaAs-layer. Scientific Reports, 10(1):1–10, 2020.

  2. Mohammad Alibakhshikenari, Bal S. Virdee, Chan H. See, Raed A. Abd-Alhameed, Francisco Falcone, and Ernesto Limiti. Silicon-Based 0.450-0.475 THz series-fed double dielectric resonator on-chip antenna array based on metamaterial properties for integrated-circuits. In 2019 13th International Congress on Artificial Materials for Novel Wave Phenomena, Metamaterials 2019, pages X026–X028, Rome, Italy, 2019. IEEE.

  3. Ayman A. Althuwayb, Mohammad Alibakhshikenari, Bal S. Virdee, Harry Benetatos, Francisco Falcone, and Ernesto Limiti. Antenna on chip (Aoc) design using metasurface and siw technologies for thz wireless applications. Electronics (Switzerland), 10(9):1–8, 2021.

    Google Scholar 

  4. Mohammad Alibakhshikenari, Bal S. Virdee, Chan H. See, Raed A. Abd-Alhameed, Francisco Falcone, and Ernesto Limiti. High-Performance 50\(\mu\)m Silicon-Based On-Chip Antenna with High Port-to-Port Isolation Implemented by Metamaterial and SIW Concepts for THz Integrated Systems. 2019 13th International Congress on Artificial Materials for Novel Wave Phenomena, Metamaterials 2019, pages X023–X025, 2019.

  5. Mohammad Alibakhshikenari, Mohsen Khalily, Bal Singh Virdee, Chan Hwang See, Raed A. Abd-Alhameed, and Ernesto Limiti. Mutual coupling suppression between two closely placed microstrip patches using EM-bandgap metamaterial fractal loading. IEEE Access, 7:23606–23614, 2019.

  6. Mohammad Alibakhshikenari, Bal S. Virdee, Panchamkumar Shukla, Chan H. See, Raed A. Abd-Alhameed, Francisco Falcone, Karim Quazzane, and Ernesto Limiti. Isolation enhancement of densely packed array antennas with periodic MTM-photonic bandgap for SAR and MIMO systems. IET Microwaves, Antennas and Propagation, 14(3):183–188, 2020.

    Article  Google Scholar 

  7. Mohammad Alibakhshi-Kenari, Mohammad Naser-Moghadasi, and R. A. Sadeghzadeh. Bandwidth and radiation specifications enhancement of monopole loaded with split ring resonators. IET Microwaves, Antennas & Propagation, 9(14):1487–1496, 2015.

  8. Mohammad Alibakhshi-Kenari, Mohammad Naser-Moghadasi, Bal S. Virdee, Aurora Andujar, and Jaume Anguera. Cmpact Antenna Based on A Cmposite Right/Left-Handed Transmission Line. Microwave and Optical Technology Letters, 57(8):1785–1788, 2015.

    Article  Google Scholar 

  9. P.J. Gibson. The Vivaldi Aerial. In 9th European Microwave Conference, pages 101–105, Brighton, UK, 1979. IEEE.

  10. Ehud Gazit. Improved design of the Vivaldi antenna. IEE Proceedings H Micro, Antennas and Propag, 135(2):89–92, 1988.

    Article  MathSciNet  Google Scholar 

  11. Shuangshuang Zhu, Haiwen Liu, Pin Wen, Zhijiao Chen, and Hao Xu. Vivaldi Antenna Array Using Defected Ground Structure for Edge Effect Restraint and Back Radiation Suppression. IEEE Antennas and Wireless Propagation Letters, 19(1):84–88, 2020.

    Article  Google Scholar 

  12. Jan Puskely, Jaroslav Lacik, Zbynek Raida, and Holger Arthaber. High-Gain Dielectric-Loaded Vivaldi Antenna for Ka-Band Applications. IEEE Antennas Wireless Propag. Lett., 15:2004–2007, 2016.

    Article  Google Scholar 

  13. Amruta S. Dixit and Sumit Kumar. A Miniaturized Antipodal Vivaldi Antenna for 5G Communication Applications. In 7th International Conference on Signal Processing and Integrated Networks (SPIN), pages 800–803, Noida, 2020. IEEE.

  14. Sumit Kumar, Amruta S. Dixit, Rajeshwari R. Malekar, Hema D. Raut, and Laxmikant K. Shevada. Fifth Generation Antennas : A Comprehensive Review of Design and Performance Enhancement Techniques. IEEE Access, 8:163568–163593, 2020.

    Article  Google Scholar 

  15. Z. Briqech, A. Sebak, and T. A. Denidni. High Gain 60 GHz Antipodal Fermi Tapered Slot Antenna With Sine Corrugation. Microw Opt Technol Lett., 57(1):6–9, 2014.

    Article  Google Scholar 

  16. Amir Mirbeik-Sabzevari, Sensen Li, Edgar Garay, Huy Thong Nguyen, Hua Wang, and Negar Tavassolian. W-band micromachined antipodal vivaldi antenna using SIW and CPW structures. IEEE Trans. Antennas Propag, 66(11):6352–6357, 2018.

  17. Mohammad Alibakhshikenari, Bal S. Virdee, Ayman Abdulhadi Althuwayb, Sonia Aïssa, Chan H. See, Raed A. Abd-Alhameed, Francisco Falcone, and Ernesto Limiti. Study on on-Chip Antenna Design Based on Metamaterial-Inspired and Substrate-Integrated Waveguide Properties for Millimetre-Wave and THz Integrated-Circuit Applications. Journal of Infrared, Millimeter, and Terahertz Waves, 42(1):17–28, 2021.

  18. Mohammad Alibakhshikenari, Bal S. Virdee, Chan H. See, Raed A. Abd-Alhameed, Francisco Falcone, and Ernesto Limiti. High-Gain Metasurface in Polyimide On-Chip Antenna Based on CRLH-TL for Sub-Terahertz Integrated Circuits. Scientific Reports, 10(1):1–9, 2020.

    Article  Google Scholar 

  19. Sumit Kumar and Amruta S. Dixit. A Bibliometric Survey on Antipodal Vivaldi Antenna. Library Philosophy and Practice, pages 1–25, 2021.

  20. Amruta S. Dixit and Sumit Kumar. A Survey of Performance Enhancement Techniques of Antipodal Vivaldi Antenna. IEEE Access, 8:45774–45796, 2020.

    Article  Google Scholar 

  21. Tushar Goel and Amalendu Patnaik. Novel Broadband Antennas for Future Mobile Communications. IEEE Trans. Antennas Propag, 66(5):2299–2308, 2018.

    Article  Google Scholar 

  22. Sumit Kumar and Amruta Dixit. Wideband Antipodal Vivaldi Antenna Using Metamaterial for Micrometer and Millimeter Wave Applications. J Infrared Milli Terahz Waves, 42:974–985, 2021.

    Article  Google Scholar 

  23. Jing Ya Deng, Run Cao, Dongquan Sun, Yin Zhang, and Li Xin Guo. Bandwidth Enhancement of an Antipodal Vivaldi Antenna Facilitated by Double-Ridged Substrate-Integrated Waveguide. IEEE Transactions on Antennas and Propagation, 68(12):8192–8196, 2020.

  24. Anthony Ghiotto, Frederic Parment, Tan Phu Vuong, and Ke Wu. Millimeter-Wave Air-Filled SIW Antipodal Linearly Tapered Slot Antenna. IEEE Antennas Wireless Propag. Lett., 16:768–771, 2017.

  25. Denghui Huang, Hu Yang, Yuqing Wu, Fei Zhao, and Xiang Liu. A high-gain antipodal Vivaldi antenna with multi-layer planar dielectric lens. Journal of Electromagnetic Waves and Applications, 32(4):3–10, 2017.

    Google Scholar 

  26. Amruta Sarvajeet Dixit, Sumit Kumar, Shabana Urooj, and Areej Malibari. A highly compact antipodal Vivaldi Antenna array for 5G millimeter wave applications. Sensors, 21(7):1–15, 2021.

  27. Nishesh Tiwari and T. Rama Rao. Substrate Integrated Waveguide Based High Gain Planar Antipodal Linear Tapered Slot Antenna with Dielectric Loading for 60 GHz Communications. Wireless Pers Commun, 97(1):1385–1400, 2017.

  28. Nan Nan Wang, Mu Fang, Hsi Tseng Chou, Jia Ran Qi, and Li Yi Xiao. Balanced Antipodal Vivaldi Antenna with Asymmetric Substrate Cutout and Dual-Scale Slotted Edges for Ultrawideband Operation at Millimeter-Wave Frequencies. IEEE Trans. Antennas Propag, 66(7):3724–3729, 2018.

  29. Jihoon Bang, Juneseok Lee, and Jaehoon Choi. Design of a Wideband Antipodal Vivaldi Antenna with an Asymmetric Parasitic Patch. Journal of Electromagnetic Engineering and Science, 18(1):29–34, 2018.

    Article  Google Scholar 

  30. Amruta Dixit and Sumit Kumar. The enhanced gain and cost-effective antipodal Vivaldi antenna for 5G communication applications. Microwave and Optical Technology Letters, 62(6):2365–2374, 2020.

    Article  Google Scholar 

  31. Farzaneh Taringou, David Dousset, Jens Bornemann, and Ke Wu. Broadband CPW feed for millimeter-wave SIW-based antipodal linearly tapered slot antennas. IEEE Trans. Antennas Propag, 61(4):1756–1762, 2013.

    Article  Google Scholar 

  32. Rania H. Elabd, Haythem H. Abdullah, and Mohamed Abdelazim. Compact Highly Directive MIMO Vivaldi Antenna for 5G Millimeter-Wave Base Station. J Infrared Milli Terahz Waves, 42:173–194, 2021.

    Article  Google Scholar 

  33. Xi Sung Loo, Moe Z. Win, and Kiat Seng Yeo. A high gain 60 GHz antipodal Fermi-tapered slot antenna based on robust synthesized dielectric. Microw Opt Technol Lett., 61(3):761–765, 2019.

  34. S. Gupta, Z. Briqech, and A.R. Sebak. Substrate integrated-based Fermi-Dirac multibeam antenna for mmWave applications. Electronics Letters, 53(19):1318–1319, 2017.

    Article  Google Scholar 

  35. Kiran D Phalak, Zouhair Briqech, and Abderazil Sebak. Ka-Band Antipodal Fermi-Linear Tapered Slot Antenna With a Knife. Microw Opt Technol Lett., 57(2):485–489, 2014.

  36. Balaka Biswas, Rowdra Ghatak, and D. R. Poddar. A Fern Fractal Leaf Inspired Wideband Antipodal Vivaldi Antenna for Microwave Imaging System. IEEE Trans. Antennas Propag, 65(11):6126–6129, 2017.

  37. Abhik Gorai, Anirban Karmakar, Manimala Pal, and Rowdra Ghatak. A super wideband Chebyshev tapered antipodal Vivaldi antenna. AEU - Int J Electron C, 69(9):1328–1333, 2015.

    Article  Google Scholar 

  38. Abdolmehdi Dadgarpour, Farid Jolani, Yu Yiqiang, Chen Zhizhang, Bal S. Virdee, and Denidni Tayeb A. A Compact Balanced Antipodal Bow-Tie Antenna Having Double Notch-Bands. Microw Opt Technol Lett., 56(9):2010–2014, 2012.

  39. M Moosazadeh. Comb-Shaped Slit Antipodal Vivaldi Antenna and Its Application for Detection of Void Inside Concrete Specimens. In Antipodal Vivaldi Antennas for Microwave Imaging of Construction Materials and Structures, pages 113–130. Springer, 2019.

  40. Jian Bai, Shouyuan Shi, and Dennis W. Prather. Modified compact antipodal Vivaldi antenna for 4-50-GHz UWB application. IEEE Trans. Microw. Theory Techn., 59(4):1051–1057, 2011.

  41. Mahdi Moosazadeh, Sergey Kharkovsky, Joseph T Case, and Bijan Samali. Miniaturized UWB Antipodal Vivaldi Antenna and Its Application for Detection of Void Inside Concrete Specimens. IEEE Antennas Wireless Propag. Lett., 16:1317–1320, 2017.

  42. Zengrui Li, Xiaole Kang, Jianxun Su, Qingxin Guo, Yaoqing (Lamar) Yang, and Junhong Wang. A Wideband End-Fire Conformal Vivaldi Antenna Array Mounted on a Dielectric Cone. Int Journal of Antennas and Propag, 2016(1):1–11, 2016.

  43. Geer Teni, Ning Zhang, Jinghui Qiu, and Pengyu Zhang. Research on a Novel Miniaturized Antipodal Vivaldi Antenna With Improved Radiation. IEEE Antennas Wireless Propag. Lett., 12:417–420, 2013.

    Article  Google Scholar 

  44. Amruta S. Dixit and Sumit Kumar. Gain Enhancement of Antipodal Vivaldi Antenna for 5G Applications Using Metamaterial. Wireless Personal Communications, pages 1–13, 2021.

  45. Amruta S. Dixit and Sumit Kumar. A Dual Band Antipodal Vivaldi Antenna for Fifth-Generation Applications. In 2021 IEEE Indian Conference on Antennas and Propagation (InCAP), pages 224–227, Jaipur, India, 2021. IEEE.

  46. Sumit Kumar and Amruta S. Dixit. Design of a high-gain dual-band antipodal Vivaldi antenna array for 5G communications. International Journal of Microwave and Wireless Technologies, pages 1–9, 2021.

  47. Amruta S. Dixit and Sumit Kumar. A Wideband Antipodal Vivaldi Antenna. In 7th International Conference on Signal Processing and Communication (ICSC), pages 11–14, Noida, India, 2021. IEEE.

  48. Hiroyasu Sato, Kunio Sawaya, Yoshihiko Wagatsuma, and Koji Mizuno. Broadband FDTD Design of Fermi Antenna. In IEEE Intemational Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications Proceedings, number 1, pages 123–126, 2005.

Download references

Funding

This project received funding from Symbiosis International (Deemed University) (Reference Number: SIU/SCRI/MJRP/19-20/1516-D).

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dixit, A.S., Kumar, S. A Fermi-Dirac Function-Based Antipodal Vivaldi Antenna for mmWave Applications. J Infrared Milli Terahz Waves 43, 244–259 (2022). https://doi.org/10.1007/s10762-022-00854-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-022-00854-6

Keywords

Navigation