Skip to main content
Log in

All-optical 40 channels regenerator based on four-wave mixing

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

We have proposed a novel multi-channel regeneration scheme for wavelength division multiplexed systems, which is based on four wave mixing in a highly nonlinear fiber. A 40-channel wavelength division multiplexed signal having data rate of 10 Gbps per channel is divided into five groups. Each group is composed of eight channels and requires a single pump laser source and two segments of highly nonlinear fibers to regenerate the eight channels. Therefore, our proposed scheme requires four times lesser number of highly nonlinear fibers compared to the previously proposed techniques. The regeneration performance for all the forty channels is presented through bit error rate analysis at low optical signal to noise ratio of 15 dB. Simulation results show that an average improvement of 4.246 dB, 3.935 dB, 3.72 dB, 2.71 dB and 2.593 dB in receiver sensitivities has been observed for all the five groups of channels, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

Available on request.

References

  1. Sarmiento, Samael, Altabas, Jose A., Spadaro, Salvatore, & Lazaro, Jose A. (2019). Experimental assessment of 10 Gbps 5G multicarrier waveforms for high-layer split U-DWDM-PON-based fronthaul. Journal of Lightwave Technology, 37(10), 2344–2351. https://doi.org/10.1109/JLT.2019.2904114

    Article  Google Scholar 

  2. Alsulami, M.A., (2018). “The role of 5G wireless networks in the internet-of-things (IoT),” International Conference on Computer Applications & Information Security (ICCAIS), pp. 1–8, https://doi.org/10.14419/ijet.v7i1.5.9155.

  3. Fiorani, M., Monti, P., Skubic, B., Martensson, J., Valcarenghi, L., Castoldi, P., & Wosinska, L. (2014). Challenges for 5G transport networks. IEEE International Conference on Advanced Networks and Telecommuncations Systems (ANTS), pp. 1-6, https://doi.org/10.1109/ants.2014.7057286.

  4. Ohlen, P., Skubic, B., Ghebretensae, Z., John, W., & Shirazipour, M. (2013). Software-defined networking in a multi-purpose DWDM-centric metro/aggregation network. IEEE Globecom Workshops, pp. 1233-1238, https://doi.org/10.1109/glocomw.2013.6825162.

  5. Ellis, A. D., McCarthy, M. E., Al-Khateeb, M. A. Z., & Sygletos, S. (2015). Capacity limits of systems employing multiple optical phase conjugators. Opt. Express, 23(16), 20381–20393. https://doi.org/10.1364/oe.23.020381

    Article  Google Scholar 

  6. Ciaramella, E., Curti, F., & Trillo, S. (2001). All-optical signal reshaping by means of four-wave mixing in optical fibers. IEEE Photonics Technology, 13(2), 142–144. https://doi.org/10.1109/68.910515

    Article  Google Scholar 

  7. Parmigiani, Francesca, Provost, Lionel, Petropoulos, Periklis, Richardson, David J., Freude, Wolfgang, Leuthold, Juerg, et al. (2012). Progress in Multichannel All-Optical Regeneration Based on Fiber Technology. IEEE Journal of Selected Topics in Quantum Electronics, 18(2), 689–700. https://doi.org/10.1109/jstqe.2011.2126040

    Article  Google Scholar 

  8. Guo, B., Wen, F., Wu, B., Sun, F., & Qiu, K. (2019). All-optical multilevel amplitude regeneration based on polarization-orthogonal continuous-wave-light-assisted nonlinear-optical loop mirror (PC-NOLM) subsystem. IEEE Access, 7, 149666–149671. https://doi.org/10.1109/access.2019.2947303

    Article  Google Scholar 

  9. Sygletos, F., Gunning., F.C.G. & Ellis. (2012). Multi-wavelength regeneration of phase encoded signals based on phase sensitive amplifiers. ICTON, pp. 1–4, https://doi.org/10.1109/icton.2012.6253868.

  10. Leclerc, O., (2003). Optical vs. Electronic in-line Signal Processing in Optical Communication Systems: An exciting challenge for Optical Devices. Signal, 1,

  11. Amirloo, Jeyran, Razavi, Mohsen, & Hamed Majedi, A. (2010). Quantum key distribution over probabilistic quantum repeaters. Physical Review A, 82(3), 032304. https://doi.org/10.1103/physreva.82.032304

    Article  Google Scholar 

  12. Parmigiani, Francesca, Asimakis, Symeon, Sugimoto, Naoki, Koizumi, Fumihito, Petropoulos, Periklis, & Richardson, David J. (2006). 2R regenerator based on a 2-m-long highly nonlinear bismuth oxide fiber. Optics Express, 14(12), 5038–5044. https://doi.org/10.1364/oe.14.005038

    Article  Google Scholar 

  13. Bramerie, Laurent. (2012). Quang Trung Le, Mathilde Gay, Arthur OHare, Sebastien Lobo, Michel Joindot, Jean-Claude Simon, Hoang-Trung Nguyen, Jean-Louis Oudar, All-optical 2R regeneration with a vertical microcavity-based saturable absorber. IEEE Journal of Selected Topics in Quantum Electronics, 18(2), 870–883. https://doi.org/10.1109/jstqe.2011.2125779

    Article  Google Scholar 

  14. Rochette, Martin, Blows, Justin L., & Eggleton, Benjamin J. (2006). 3R optical regeneration: An all-optical solution with BER improvement. Opt. Express, 14(14), 6414–6427. https://doi.org/10.1364/oe.14.006414

    Article  Google Scholar 

  15. Croussore, Kevin, & Li, Guifang. (2007). Phase regeneration of NRZ-DPSK signals based on symmetric-pump phase-sensitive amplification. IEEE Photonics Technology Letters, 19(11), 864–866. https://doi.org/10.1109/lpt.2007.897501

    Article  Google Scholar 

  16. Wang, Hongxiang, Luo, Tiantian, & Ji, Yuefeng. (2019). Multi-channel phase regeneration of QPSK signals based on phase sensitive amplification. Frontiers of Optoelectronics, 12(1), 24–30. https://doi.org/10.1007/s12200-018-0754-8

    Article  Google Scholar 

  17. Wang, J., Ji, H., Hu, H., Yu, J., Mulvad, H. C. H., Galili, M., & Oxenlowe, L. K. (2014). 4x160-Gbit/s multi-channel regeneration in a single fiber. Optics express, 22(10), 11456–11464.

    Article  Google Scholar 

  18. Contestabile, Giampiero, Presi, Marco, & Ciaramella, Ernesto. (2010). All-optical regeneration of 40 Gb/s constant envelope alternative modulation formats. IEEE Journal of Quantum Electronics, 46(3), 340–346. https://doi.org/10.1109/jqe.2009.2033017

    Article  Google Scholar 

  19. de Sousa, F. B., de Sousa, F. M., de Oliveira, J. E., et al. (2020). Numerical analysis of the performance of a Mach-Zehnder interferometer based on acousto-optic filter for signal regeneration. Opt Quant Electron, 52, 264. https://doi.org/10.1007/s11082-020-02389-3

    Article  Google Scholar 

  20. Zhou, Xing-yu, Bao-jian, Wu., Wen, Feng, Zhang, Hong-chao, Zhou, Heng, & Qiu, Kun. (2014). Total date rate of multi-wavelength 2R regenerators for time-interleaved RZ-OOK signals. Optics Express, 22, 22937–22951.

    Article  Google Scholar 

  21. Li, Lu., Patki, Pallavi G., Kwon, Young B., Stelmakh, Veronika, Campbell, Brandon D., Annamalai, Muthiah, et al. (2017). All-optical regenerator of multi-channel signals. Nature communication, 8(1), 1–11. https://doi.org/10.1038/s41467-017-00874-0

    Article  Google Scholar 

  22. Ciaramella, E., & Trillo, S. (2000). All-optical signal reshaping via four-wave mixing in optical fibers. IEEE Photonics Technology Letters, 12(7), 849–851. https://doi.org/10.1109/68.853523

    Article  Google Scholar 

  23. Ghafoor, S., & Petropoulos, P. (2010). “Effect of dispersion slope of highly nonlinear fibre on the performance of Self Phase Modulation based 2R-optical regenerator,” 2010 2nd International Conference on Computer Technology and Development, pp. 144-148, https://doi.org/10.1109/ICCTD.2010.5646133.

Download references

Funding

Not Applicable

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salman Ghafoor.

Ethics declarations

Code Availability

Available on request

Conflicts of interest/Competing interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghafoor, S., Khan, M.U., Gulistan, A. et al. All-optical 40 channels regenerator based on four-wave mixing. Telecommun Syst 79, 123–131 (2022). https://doi.org/10.1007/s11235-021-00855-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-021-00855-1

Keywords

Navigation