Skip to main content
Log in

An adaptive q-Lognormal model towards the computation of average channel capacity in slow fading channels

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

The characterization of multipath fading and shadowing in wireless communication systems is essential towards the evaluation of various performance measures. It is well known that the statistical characterization of shadowing phenomena is captured by distributions viz., log-normal distribution, gamma distribution and other mixture distributions. However, it is observed that the log-normal distribution fails to characterize the outliers in the fading signal. The extreme fluctuations in the fading signal needs to be characterized efficiently for error free computation of the various performance metrics. In this context, this paper portrays an adaptive generalized Tsallis’ non-extensive q-Lognormal model towards the characterization of various fading channels. This model operates well with the synthesized fading signals and captures the wide range of tail fluctuations to adapt different fading scenarios. The significance and applicability of the proposed novel q-lognormal model in capturing the slow fading channels is validated using different statistical tests viz., chi-square test and symmetric JS measure. Furthermore, essential performance measures viz., the average channel capacity, closed form expression of cumulative distribution function (CDF) in terms of Gauss-Hypergeometric function \({}_2{F_1}\left[ {\mathrm{{a, b, c; z}}} \right] \), moment generating function, higher order moments corresponding to q-Lognormal channel capacity and coefficient of variation is evaluated corresponding to the proposed q-lognormal model performing extensive Monte-Carlo simulation techniques up to \(O(10^7)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Simon, M. K., & Alouini, M. S. (2005). Digital communication over fading channels (Vol. 95). New York: Wiley.

    Google Scholar 

  2. Hansen, F., & Meno, F. I. (1977). Mobile fading rayleigh and lognormal superimposed. IEEE Transactions on Vehicular Technology, 26(4), 332–335.

    Article  Google Scholar 

  3. Coulson, A. J., Williamson, A. G., & Vaughan, R. G. (1988). A statistical basis for lognormal shadowing effects in multipath fading channels. IEEE Transactions on Communications, 46(4), 494–502.

    Article  Google Scholar 

  4. Shankar, P. M. (2017). Fading and shadowing in wireless systems. Berlin: Springer.

    Book  Google Scholar 

  5. Rappaport, T. S. (1996). Wireless communications: principles and practice (Vol. 2). New Jersey: Prentice hall PTR.

    Google Scholar 

  6. Abramowitz, M., Stegun, I. A., & Romer, R. H. (1988). Handbook of mathematical functions with formulas, graphs, and mathematical tables.

  7. Bebortta, S., Singh, A. K., Mohanty, S., & Senapati, D. (2020). Characterization of range for smart home sensors using Tsallis entropy framework. Advanced computing and intelligent engineering (pp. 265–276). Singapore: Springer.

  8. Singh, R., Soni, S. K., Raw, R. S., & Kumar, S. (2017). A new approximate closed-form distribution and performance analysis of a composite Weibull/log-normal fading channel. Wireless Personal Communications, 92(3), 883–900.

    Article  Google Scholar 

  9. Khandelwal, V. (2011). MGF and high order moment of channel capacity in log-normal fading environment. In Proceedings of the 1st International Conference on Wireless Technologies for Humanitarian Relief, 99-106.

  10. Senapati, D. (2016). Generation of cubic power-law for high frequency intra-day returns: Maximum Tsallis entropy framework. Digital Signal Processing, 48, 276–284.

    Article  Google Scholar 

  11. Tsallis, C., & Mechanics, N. E. S. (2004). Construction and Physical Interpretation. Nonextensive Entropy Interdisciplinary Applications, 1–52.

  12. Holtzman, J. M. (1992). A simple, accurate method to calculate spread-spectrum multiple-access error probabilities. IEEE Transactions on Communications, 40(3), 461–464.

    Article  Google Scholar 

  13. Namaki, A., Lai, Z. K., Jafari, G. R., Raei, R., & Tehrani, R. (2013). Comparing emerging and mature markets during times of crises: A non-extensive statistical approach. Physica A: Statistical Mechanics and its Applications, 392(14), 3039–3044.

    Article  Google Scholar 

  14. Li, J., Chen, Q., Long, Z., Wang, W., Zhu, H., & Wang, L. (2021). Spectrum sensing with non-Gaussian noise over multi-path fading channels towards smart cities with IoT. IEEE Access, 9, 11194–11202.

    Article  Google Scholar 

  15. Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  16. Abe, S., & Bagci, G. B. (2005). Necessity of q-expectation value in nonextensive statistical mechanics. Physical Review E, 71(1), 016139.

    Article  Google Scholar 

  17. Das, S., & Bhattacharya, A. (2020). Application of the mixture of Lognormal distribution to represent the first-order statistics of wireless channels. IEEE Systems Journal, 14(3), 4394–4401.

    Article  Google Scholar 

  18. Shankar, P. M. (2011). Statistical models for fading and shadowed fading channels in wireless systems: A pedagogical perspective. Wireless Personal Communications, 60(2), 191–213.

    Article  Google Scholar 

  19. Polydorou, D. S., & Capsalis, C. N. (1997). A new theoretical model for the prediction of rapid fading variations in an indoor environment. IEEE Transactions on Vehicular Technology, 46(3), 748–754.

    Article  Google Scholar 

  20. Chauhan, P. S., Tiwari, D., & Soni, S. K. (2017). New analytical expressions for the performance metrics of wireless communication system over Weibull/Lognormal composite fading. AEU-International Journal of Electronics and Communications, 82, 397–405.

    Article  Google Scholar 

  21. Shannon, C. E. (2001). A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communications Review, 5(1), 3–55.

    Article  Google Scholar 

  22. Lee, W. C. (1990). Estimate of channel capacity in Rayleigh fading environment. IEEE Transactions on Vehicular Technology, 39(3), 187–189.

    Article  Google Scholar 

  23. Laourine, A., Stéphenne, A., & Affes, S. (2007). Estimating the ergodic capacity of log-normal channels. IEEE Communications Letters, 11(7), 568–570.

    Article  Google Scholar 

  24. Bebortta, S., Senapati, D., Rajput, N. K., Singh, A. K., Rathi, V. K., Pandey, H. M., & Tiwari, P. (2020). Evidence of power-law behavior in cognitive IoT applications. Neural Computing and Applications, 32(20), 16043–16055.

    Article  Google Scholar 

  25. Bebortta, S., Singh, A. K., Pati, B., & Senapati, D. (2021). A robust energy optimization and data reduction scheme for IoT based indoor environments using local processing framework. Journal of Network and Systems Management, 29(1), 1–28.

    Article  Google Scholar 

  26. Nayak, G., Singh, A. K., Bhattacharjee, S., & Senapati, D. (2021). A new tight approximation towards the computation of option price. International Journal of Information Technology, 1–9.

  27. Mukherjee, T., Nayak, G., & Senapati, D. (2021). Evaluation of symbol error probability using a new tight Gaussian Q approximation. International Journal of Systems, Control and Communications, 12(1), 60–71.

    Article  Google Scholar 

  28. Panic, S., Stefanovic, M., Vasic, S., Milic, D., & Cvetkovic, A. (2014). On the first and the second order statistics of the capacity of k-\(\mu \) fading channels. Frequenz, 68(9–10), 471–475.

    Google Scholar 

  29. Laourine, A., Stephenne, A., & Affes, S. (2009). On the capacity of log-normal fading channels. IEEE Transactions on Communications, 57(6), 1603–1607.

    Article  Google Scholar 

  30. Sagias, N. C., Zogas, D. A., Karagiannidis, G. K., & Tombras, G. S. (2004). Channel capacity and second-order statistics in Weibull fading. IEEE Communications Letters, 8(6), 377–379.

    Article  Google Scholar 

  31. El Bouanani, F., Ben-Azza, H., & Belkasmi, M. (2012). New results for Shannon capacity over generalized multipath fading channels with MRC diversity. EURASIP Journal on Wireless Communications and Networking, 2012(1), 336.

    Article  Google Scholar 

  32. Mukherjee, T., Singh, A. K., & Senapati, D. (2019). Performance evaluation of wireless communication systems over Weibull/q-Lognormal shadowed fading using Tsallis entropy framework. Wireless Personal Communications, 106(2), 789–803.

    Article  Google Scholar 

  33. Foerster, J. (2002). Channel modelling sub-committee report final. IEEE P802. 15-02/368rs-SG3a.

  34. Alouini, M. S., & Goldsmith, A. J. (1999). Area spectral efficiency of cellular mobile radio systems. IEEE Transactions on Vehicular Technology, 48(4), 1047–1066.

    Article  Google Scholar 

  35. Nayak, G., Singh, A. K., & Senapati, D. (2020). Computational modeling of Non-Gaussian option price using non-extensive Tsallis entropy framework. Computational Economics, 1–19.

  36. Mukherjee, T., Pati, B., & Senapati, D. (2019). Performance Evaluation of Composite Fading Channels Using q-Weibull Distribution. Progress in Advanced Computing and Intelligent Engineering (pp. 317–324). Singapore: Springer.

  37. Singh, A. K., Senapati, D., Mukherjee, T., & Rajput, N. K. (2019). Adaptive Applications of Maximum Entropy Principle. Progress in Advanced Computing and Intelligent Engineering (pp. 373–379). Singapore: Springer.

Download references

Acknowledgements

The authors would like to thank the Department of Science and Technology (DST), for their continuous support during the period of this research. The authors are also appreciative to the reviewers for their insightful comments that helped to improve the manuscript’s overall quality and presentation.

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Proof of (Eq. 10)

The CDF of the proposed q-Lognormal distribution can be expressed as

$$\begin{aligned} \varTheta (\gamma ) = \int \limits _{ - \infty }^\gamma {{\varphi _q}(t)dt}. \end{aligned}$$
(46)
$$\begin{aligned} \varTheta (\gamma ) = \int \limits _{ - \infty }^\gamma {\frac{1}{{\xi t}}{{\left( {1 + \frac{{q - 1}}{{3 - q}}{{\left( {\frac{{ln(t) - \mu }}{\sigma }} \right) }^2}} \right) }^{\frac{1}{{1 - q}}}}dt}, \end{aligned}$$
(47)

where \(\xi \) is the normalized constant as defined in Eq. 8. Replacing \(ln(t)=x\), we obtain

$$\begin{aligned} \varTheta (\gamma ) = \frac{1}{\xi }\int \limits _{ - \infty }^{\ln \gamma } {{{\left( {1 + \frac{{q - 1}}{{3 - q}}{{\left( {\frac{{x - \mu }}{\sigma }} \right) }^2}} \right) }^{\frac{1}{{1 - q}}}}dx}. \end{aligned}$$
(48)

Now, substituting \(\frac{{x - \mu }}{\sigma } = y\) we obtain

$$\begin{aligned} \varTheta (\gamma ) = \frac{\sigma }{\xi }\int \limits _{ - \infty }^{\frac{{\ln \gamma - \mu }}{\sigma }} {\left( {1 + \frac{{q - 1}}{{3 - q}}{{\left( y \right) }^2}} \right) ^{\frac{1}{{1 - q}}}}dy. \end{aligned}$$
(49)

Finally, after some mathematical computations, the CDF corresponding to the q-Lognormal distribution can be expressed in terms of Gauss Hypergeometric function [6] as

$$\begin{aligned} \varTheta (\gamma )= & {} \frac{1}{2}\nonumber \\&+ \frac{{\ln \gamma - \mu }}{\xi }{}_2{F_1}\left[ {\frac{1}{2},\frac{1}{{q - 1}},\frac{3}{2},\frac{{1 - q}}{{3 - q}}{{\left( {\frac{{\ln \gamma - \mu }}{\sigma }} \right) }^2}} \right] .\nonumber \\ \end{aligned}$$
(50)

Proof of (Eq. 25)

From Eq. 23, it is obtained

$$\begin{aligned} M(z) = \int \limits _0^\infty {f(\gamma )} {(1 + \gamma )^z}d\gamma . \end{aligned}$$
(51)

Applying the transformation \(\mathop {\lim }\limits _{q \rightarrow 1}\) in Eq. 16 and substituting \(ln(\gamma )=y\), the MGF is obtained as

$$\begin{aligned} M(z) = \frac{1}{{\sigma \sqrt{2\pi } }}\int \limits _{ - \infty }^\infty {\exp \left( { - \frac{{{{\left( {y - \mu } \right) }^2}}}{{2{\sigma ^2}}}} \right) } {(1 + \exp (y))^z}dy.\nonumber \\ \end{aligned}$$
(52)

On further simplification, we get

$$\begin{aligned} \begin{aligned} M(z) ={}&\frac{1}{{\sigma \sqrt{2\pi } }}\int \limits _0^\infty {\exp \left( { - \frac{{{{\left( {y + \mu } \right) }^2}}}{{2{\sigma ^2}}}} \right) } {(1 + \exp ( - y))^z}dy\\&+ \frac{1}{{\sigma \sqrt{2\pi } }}\int \limits _0^\infty {\exp \left( { - \frac{{{{\left( {y - \mu } \right) }^2}}}{{2{\sigma ^2}}} + yz} \right) } \\&(1+ \exp ( - y))^zdy. \end{aligned} \end{aligned}$$
(53)

Now, w.r.t \(y>0\), \(\exp (-y)<1\), it is obtained

$$\begin{aligned} {(1 + \exp ( - y))^z} = \sum \limits _{v = 0}^\infty {\frac{{{{(z)}_v}}}{{v!}}} \exp \left( { - yv} \right) , \end{aligned}$$
(54)

where \({{{(z)}_v}}\) is the lower factorial and is represented as \({(z)_v} = z(z - 1)(z - 2)...(z - v + 1)\) [9] .

Equation 53 along with Eq. 54 yields

$$\begin{aligned} \begin{aligned} M(z) ={}&\frac{1}{{\sigma \sqrt{2\pi } }}\sum \limits _{v = 0}^\infty {\frac{{{{(z)}_v}}}{{v!}}} \int \limits _0^\infty {\exp \left( { - yv} \right) } \exp \left( { - \frac{{{{\left( {y - \mu } \right) }^2}}}{{2{\sigma ^2}}} + yz} \right) dy \\&+ \frac{1}{{\sigma \sqrt{2\pi } }}\sum \limits _{v = 0}^\infty {\frac{{{{(z)}_v}}}{{v!}}} \int \limits _0^\infty {\exp \left( { - yv} \right) } \exp \left( { - \frac{{{{\left( {y + \mu } \right) }^2}}}{{2{\sigma ^2}}}} \right) dy. \end{aligned} \end{aligned}$$
(55)

Considering \(\frac{1}{{\sigma \sqrt{2\pi } }}\int \limits _0^\infty {\exp \left( { - yv} \right) } \exp \left( { - \frac{{{{\left( {y + \mu } \right) }^2}}}{{2{\sigma ^2}}}} \right) dy = \sigma \sqrt{\frac{\pi }{2}} \mathrm {erfcx}\left( {\frac{{v\sigma }}{{\sqrt{2} }} + \frac{\mu }{{\sqrt{2} \sigma }}} \right) \exp \left( { - \frac{{{\mu ^2}}}{{2{\sigma ^2}}}} \right) \) and \(\mathrm {erfcx}(t) = \exp ({t^2})\mathrm {erfc}(t)\), the MGF corresponding to the q-Lognormal channel capacity, \(q\rightarrow 1\) is evaluated and is expressed in Eqs. 24 and  25.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, T., Senapati, D. An adaptive q-Lognormal model towards the computation of average channel capacity in slow fading channels. Telecommun Syst 79, 341–355 (2022). https://doi.org/10.1007/s11235-021-00843-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-021-00843-5

Keywords

Navigation