Skip to main content
Log in

Channel Capacity Analysis over Slow Fading Environment: Unified Truncated Moment Generating Function Approach

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A unified approach based on truncated moment generating function (TMGF) is employed to derive the explicit expressions for channel capacity of log-normal channel under different adaptive transmission policy. The analysis is carried out assuming channel state information known to both transmitter and receiver. The efficacy of the approach is based on the fact it yields computationally convenient and efficient results in log-normal fading environment. Based on TMGF, a simple closed form expression for higher order moments of channel capacity for log-normal channels is obtained when channel state information is only known to receiver. Numerical computation in relation to simulation results for varying value of \(\sigma _{ dB}\) over permissible range are carried out to validate the accuracy of derived expressions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Goldsmith, A. (2006). Wireless communications. Singapore: Cambridge University Press.

  2. Goldsmith, A., & Varaiya, P. (1997). Capacity of fading channels with channel side information. IEEE Transaction on Information Theory, 43(6), 1986–1992.

    Article  MATH  MathSciNet  Google Scholar 

  3. Simon, M. K., & Alouini, M. S. (2000). Digital communication over fading channels: A unified approach to performance analysis. New York: Wiley.

    Book  Google Scholar 

  4. Lee, W. C. Y. (1990). Estimate of chanel capacity in Rayleigh fading environment. IEEE Transactions on Vehicular Technology, 93(3), 187–189.

    Article  Google Scholar 

  5. Sagias, N. C., Tombras, G. S., & Karagiannidis, G. K. (2005). New results for the Shannon channel capcity in generalized fading channels. IEEE Communication Letters, 9(2), 97–99.

    Article  Google Scholar 

  6. Alouni, M. S., & Goldsmith, A. J. (1999). Capacity of Rayleigh fading channels under different adaptive transmission and diversity-combining techniques. IEEE Transactions on Vehicular Technology, 48(4), 1165–1181.

    Article  Google Scholar 

  7. Yilmaz, F., & Alouini, M. S. (2012). A unified MGF-based capacity analysis of diversity combiners over generalized fading channels. IEEE Transactions on Communications, 60(3), 862–875.

    Article  Google Scholar 

  8. Renzo, M. D., Graziosi, F., & Santucci, F. (2010). Channel capacity over generalized fading channels: A novel MGF-based approach for performance analysis and design of wireless communication systems. IEEE Transactions on Vehicular Technology, 59(1), 127–149.

    Article  Google Scholar 

  9. Skraparlis, D., Sakarellos, V. K., Panangopoulos, A. D., & Kanellopoulos, J. D. (2011). New results on the statistics and the capacity of dual-branch MRC and EGC diversity in correlated lognormal channels. IEEE Communication Letters, 15(6), 617–619.

    Article  Google Scholar 

  10. Karmeshu, & Khandelwal, V. (2011). MGF and high order moment of channel capacity in log-normal fading environment. In Proceedings of the international conference on wireless technologies for humanitarian relief, ACWR 2011, ACM (pp. 99–106).

  11. Karmeshu, & Khandelwal, V. (2013). On the applicability of average channel capacity in log-normal fading environment. Wireless Personal Communications, 68(4), 1393–1402.

    Article  Google Scholar 

  12. Theofilakos, P., Kanatasand, A. G., & Efthymoglou, G. P. (2008). Performance of generalized selection combining receivers in K-fading channels. IEEE Communications Letters, 12(11), 816–818.

    Article  Google Scholar 

  13. Al-Qahtani, F. S., Zummo, S. A., Gurung, A. K., & Hussain, Z. M. (2010). Spectral efficiency of maximum ratio combining (MRC) over slow fading with estimation errors. Elsevier Digital Signal Processing, 20(1), 85–96.

    Article  Google Scholar 

  14. Laourine, A., Alouini, M. S., Affes, S., & Stephenne, A. (2008). On the capacity of generalized-K fading channels. IEEE Transactions on Wireless Communications, 7, 2441–2445.

    Article  Google Scholar 

  15. Mallik, R. K., Win, M. Z., Shao, J. W., & Goldsmith, A. (2004). Channel capacity of adaptive transmission with maximal ratio combining in correlated Rayleigh fading. IEEE Transactions on Wireless Communications, 3, 1124–1133.

    Article  Google Scholar 

  16. Laourine, A., Alouini, M. S., Affes, S., & Stephenne, A. (2009). On the performance analysis of composite multipath/shadowing channels using the G-distribution. IEEE Transactions on Communications, 57(4), 1162–1170.

    Article  Google Scholar 

  17. Dwivedi, V. K., & Singh, G. (2012). Marginal moment generating function based analysis of channel capapcity over correlated Nakagami-m fading with maximal-ration combining divesity. Progress in Electromagnetics Research B, 41, 333–356.

    Article  Google Scholar 

  18. Le, K. N., & Dabke, K. P. (2012). Channel capacity of OFDM systems employing diversity in fading environments. Wireless Communications and Mobile Computing, 12(17), 1493–1516.

    Article  Google Scholar 

  19. Molisch, A. F., Foerster, J. R., & Pendergrass, M. (2003). Channel models for ultrawideband personal area networks. IEEE Wireless Communication Magazine, 10(6), 14–21.

    Article  Google Scholar 

  20. Cotton, S. L., & Scanlon, W. G. (2007). Higher order statistics for lognormal small-scale fading in mobile radio channels. IEEE Antennas and Wireless Propagation Letters, 6, 540–543.

    Article  Google Scholar 

  21. Foerster, J., et al. (2003). Channel modelling sub-committee report final. IEEE P802.15 wireless personal area networks. Technical Report P802.15-02/490r1-SG3a.

  22. Gaofeng, P., Ekici, E., & Feng, Q. (2012). Capacity analysis of log-normal channels under various adaptive transmission schemes. IEEE Communications Letters, 16(3), 346–348.

    Article  Google Scholar 

  23. Laourine, A., Stephenne, A., & Affes, S. (2007). Estimating the ergodic capacity of log-normal channels. IEEE Communication Letters, 11(7), 568–570.

    Article  Google Scholar 

  24. Laourine, A., Stephenne, A., & Affes, S. (2009). On the capacity of log-normal fading channels. IEEE Transaction on Communications, 57(6), 1603–1607.

    Article  Google Scholar 

  25. Heliot, F., Chu, X., Hoshyar, R., & Tafazolli, R. (2009). A tight closed-form approximation of the log-normal fading channel capacity. IEEE Transaction on Wireless Communications, 8(6), 2842–2847.

    Article  Google Scholar 

  26. Gradshteyn, I. S., & Ryzhik, I. M. (2000). Table of integrals, series, and products (6th ed.). San Diego, CA: Academic Press.

    MATH  Google Scholar 

  27. Abramowitz, M., & Stegun, I. A. (1970). Handbook of mathematical functions with formulas, graphs, and mathematical tables. New York: Dover Publications.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karmeshu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khandelwal, V., Karmeshu Channel Capacity Analysis over Slow Fading Environment: Unified Truncated Moment Generating Function Approach. Wireless Pers Commun 82, 2377–2390 (2015). https://doi.org/10.1007/s11277-015-2353-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2353-y

Keywords

Navigation