Skip to main content
Log in

Characterization of the impact of network topology on the performance of single-radio wireless mesh networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Stub Wireless Mesh Networks (WMNs) are used to extend Internet access. The use of multiple channels improves the capacity of WMN but significant challenges arise when nodes are limited to a single-radio interface to form the WMN. In particular, the assignment of mesh nodes to channels results on the creation of multiple sub-networks, one per channel, where individual capacity may depend on the sub-network topologies This paper identifies the relevant topological characteristics of the sub-networks resultant from the channel assignment process and studies, through simulation, the impact and relative importance of those characteristics on the maximal throughput enabled by the stub WMN. The number of nodes in the gateways neighborhood and the hidden node problem in the gateways neighborhood were identified as the characteristics having the highest impact on the WMN throughput.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Abdullah, A., Gebali, F., & Cai, L. (2009). Modeling the throughput and delay in wireless multihop ad hoc networks. In IEEE Global Telecommunications Conf. (GLOBECOM’09), USA (pp. 1–6).

    Google Scholar 

  2. Adya, A., Bahl, P., Padhye, J., Wolman, A., & Zhou, L. (2004). A multi-radio unification protocol for ieee 802.11 wireless networks. In Proc. inter. conf. on Broadband Networks (BroadNets’04) (pp. 344–354). New York: IEEE Press.

    Chapter  Google Scholar 

  3. Alicherry, M., Bhatia, R., & Li, L. E. (2005). Joint channel assignment and routing for throughput optimization in multi-radio wireless mesh networks. In Proc. inter. conf. on mobile computing and networking (MobiCom’05), Germany (pp. 58–72). doi:10.1145/1080829.1080836.

    Google Scholar 

  4. Ashraf, U., Abdellatif, S., & Juanole, G. (2011). Route selection in IEEE 802.11 wireless mesh networks. Telecommunications Systems. doi:10.1007/s11235-011-9493-5.

    Google Scholar 

  5. Avallone, S., D’Elia, F. P., & Ventre, G. (2011). A new channel, power and rate assignment algorithm for multi-radio wireless mesh networks. Telecommunications Systems. doi:10.1007/s11235-010-9416-x.

    Google Scholar 

  6. Bachir, A., Barthel, D., Heusse, M., & Duda, A. (2005). Hidden nodes avoidance in wireless sensor networks. In Proc. inter. conf. wireless networks, communications and mobile computing (WirelessCom’05), USA (Vol. 1, pp. 612–617). doi:10.1109/WIRLES.2005.1549478.

    Google Scholar 

  7. Bahl, P., Chandra, R., & Dunagan, J. (2004). SSCH: slotted seeded channel hopping for capacity improvement in IEEE 802.11 ad-hoc wireless networks. In Proc. inter. conf. on mobile computing and networking (MobiCom’04), USA (pp. 216–230). doi:10.1145/1023720.1023742.

    Google Scholar 

  8. Calçada, T., & Ricardo, M. (2011). The impact of network topology on the performance of multi-channel single-radio mesh networks. In Proc. of networking and electronic commerce rsrch. conf (NAEC’11), Italy.

    Google Scholar 

  9. Chan, C. P., Liew, S. C., & Chan, A. (2009). Many-to-one throughput capacity of IEEE 802.11 multihop wireless networks. IEEE Transactions on Mobile Computing, 8(4), 514–527. doi:10.1109/TMC.2008.130.

    Article  Google Scholar 

  10. Crichigno, J., Wu, M., & Shu, W. (2008). Protocols and architectures for channel assignment in wireless mesh networks. Ad Hoc Networks, 6(7), 1051–1077. doi:10.1016/j.adhoc.2007.10.002.

    Article  Google Scholar 

  11. Dhananjay, A., Zhang, H., Li, J., & Subramanian, L. (2009). Practical, distributed channel assignment and routing in dual-radio mesh networks. Computer Communication Review, 39(4), 99–110.

    Article  Google Scholar 

  12. Gupta, P., & Kumar, P. R. (2000). The capacity of wireless networks. IEEE Transactions on Information Theory, 46(2), 388–404.

    Article  Google Scholar 

  13. IEEE802 11 IEEE wireless LAN medium access control (MAC) and physical layer (PHY) specifications (2007).

  14. IEEE802, s. IEEE wireless LAN medium access control (MAC) and physical layer (PHY) specifications draft on mesh networking (2009).

  15. Jiang, L. B., & Liew, S. C. (2008). Improving throughput and fairness by reducing exposed and hidden nodes in 802.11 networks. IEEE Transactions on Mobile Computing, 7(1), 34–49. doi:10.1109/TMC.2007.1070.

    Article  Google Scholar 

  16. Jun, J., Peddabachagari, P., & Sichitiu, M. (2003). Theoretical maximum throughput of IEEE 802.11 and its applications. In Proc. inter. symp. network computing and applications (NCA’03), USA, pp. 249–256). doi:10.1109/NCA.2003.1201163.

    Google Scholar 

  17. Jun, J., & Sichitiu, M. (2003). The nominal capacity of wireless mesh networks. IEEE Wireless Communications, 10(5), 8–14.

    Article  Google Scholar 

  18. Jun, J., & Sichitiu, M. (2004). Fairness and QoS in multihop wireless networks. In IEEE vehicular technology conf. (VTC-Fall’03) (pp. 2936–2940).

    Google Scholar 

  19. Kodialam, M., & Nandagopal, T. (2005). Characterizing the capacity region in multi-radio multi-channel wireless mesh networks. In Proc. inter. conf. on mobile computing and networking (MobiCom’05), Germany (pp. 73–87).

    Google Scholar 

  20. Kuo, J., Liao, W., & Hou, T. (2009). Impact of node density on throughput and delay scaling in multi-hop wireless networks. IEEE Transactions on Wireless Communications, 8(10), 5103–5111. doi:10.1109/TWC.2009.071467.

    Article  Google Scholar 

  21. Kyasanur, P., & Vaidya, N. H. (2005). Capacity of multi-channel wireless networks: impact of number of channels and interfaces. In Proc. inter. conf. on mobile computing and networking (MobiCom’05), Germany (pp. 43–57). doi:10.1145/1080829.1080835.

    Google Scholar 

  22. Li, J., Blake, C., Couto, D. S. D., Lee, H. I., & Morris, R. (2001). Capacity of ad hoc wireless networks. In Proc. inter. conf. on mobile computing and networking (MobiCom’01), Italy (pp. 61–69). doi:10.1145/381677.381684.

    Google Scholar 

  23. Marina, M. K., Das, S. R., & Subramanian, A. P. (2010). A topology control approach for utilizing multiple channels in multi-radio wireless mesh networks. Computer Networks, 54(2), 241–256.

    Article  Google Scholar 

  24. Matos, R., Sargento, S., Hummel, K. A., Hess, A., Tutschku, K., & Meer, H. (2011). Context-based wireless mesh networks: a case for network virtualization. Telecommunications Systems. doi:10.1007/s11235-011-9434-3.

    Google Scholar 

  25. Nagesh, S. N., Deepti, S. N., Cavalcanti, D., & Agrawal, D. P. (2006). A novel queue management mechanism for improving performance of multihop flows in IEEE 802.11 s based mesh networks. In Proc. inter. conf. performance, computing, and communications (IPCCC’06), USA, pp. 162–168). doi:10.1109/.2006.1629403.

    Google Scholar 

  26. Ng, P. C., & Liew, S. C. (2007). Throughput analysis of IEEE802.11 multi-hop ad hoc networks. IEEE/ACM Transactions on Networking, 15(2), 309–322.

    Article  Google Scholar 

  27. Ramachandran, K., Sheriff, I., Belding, E., & Almeroth, K. (2008). A multi-radio 802.11 mesh network architecture. Mobile Networks and Applications, 13(1), 132–146. doi:10.1007/s11036-008-0026-8.

    Article  Google Scholar 

  28. Robinson, J., Papagiannaki, K., Diot, C., Guo, X., & Krishnamurthy, L. (2005). Experimenting with a Multi-radio mesh networking testbed. In Proc. inter. wksp. on wireless network measurements (WINMEE’05), Italy. doi:http://www.cs.ucsb.edu/~ebelding/courses/284/papers/diot_testbed.pdf.

    Google Scholar 

  29. Skalli, H., Ghosh, S., Das, S., Lenzini, L., & Conti, M. (2007). Channel assignment strategies for multiradio wireless mesh networks: issues and solutions. IEEE Communications Magazine, 45(11), 86–95. doi:10.1109/MCOM.2007.4378326.

    Article  Google Scholar 

  30. So, J., & Vaidya, N. (2006). Load-balancing routing in multichannel hybrid wireless networks with single network interface. IEEE Transactions on Vehicular Technology, 55(3), 806–812. doi:10.1109/TVT.2006.874550.

    Article  Google Scholar 

  31. So, J., & Vaidya, N. H. (2004). Multi-channel mac for ad hoc networks: handling multi-channel hidden terminals using a single transceiver. In Proc. inter. symp. on mobile ad hoc networking and computing (MobiHoc’04), Japan (pp. 222–233).

    Chapter  Google Scholar 

  32. Subramanian, A., Gupta, H., Das, S., & Cao, J. (2008). Minimum interference channel assignment in multiradio wireless mesh networks. IEEE Transactions on Mobile Computing, 7(12), 1459–1473.

    Article  Google Scholar 

  33. Vedantham, R., Kakumanu, S., Lakshmanan, S., & Sivakumar, R. (2006). Component based channel assignment in single radio, multi-channel ad hoc networks. In Proc. inter. conf. on mobile computing and networking (MobiCom’06), USA (pp. 378–389). doi:10.1145/1161089.1161132.

    Chapter  Google Scholar 

  34. Wang, B., Lim, H. B., Ma, D., & Fu, C. (2010). The hop count shift problem and its impacts on protocol design in wireless ad hoc networks. Telecommunications Systems, 44(1–2), 49–60. doi:10.1007/s11235-009-9221-6.

    Article  Google Scholar 

  35. Xu, K., Gerla, M., & Bae, S. (2002). How effective is the IEEE 802.11 RTS/CTS handshake in ad hoc networks. In Proc. IEEE global telecom. conf (GLOBECOM’02), Taiwan (Vol. 1, pp. 72–76).

    Google Scholar 

  36. Yang, J., Kwon, J., Hwang, H., & Sung, D. (2009). Goodput analysis of a WLAN with hidden nodes under a non-saturated condition. IEEE Transactions on Wireless Communications, 8(5), 2259–2264. doi:10.1109/TWC.2009.080632.

    Article  Google Scholar 

Download references

Acknowledgements

This work was co-supported by the SitMe project from QREN–ON.2 program, the MC-WMNs project (PTDC EEA TEL 120176/2010) from Fundação para a Ciencia e Tecnologia (FCT), and the FCT grant SFRH BD S13444/2003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tânia Calçada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calçada, T., Ricardo, M. Characterization of the impact of network topology on the performance of single-radio wireless mesh networks. Telecommun Syst 57, 159–179 (2014). https://doi.org/10.1007/s11235-013-9812-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-013-9812-0

Keywords

Navigation