Skip to main content
Log in

Hamiltonian Flows on Euler-Type Equations

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We analyze properties of Hamiltonian symmetry flows on hyperbolic Euler-Liouville-type equations ε ′EL. We obtain the description of their Noether symmetries assigned to the integrals of these equations. The integrals provide Miura transformations from ε′EL to the multicomponent wave equations ε. Using these substitutions, we generate an infinite-Hamiltonian commutative subalgebra \(\mathfrak{A}\) of local Noether symmetry flows on ε proliferated by weakly nonlocal recursion operators. We demonstrate that the correspondence between the Magri schemes for \(\mathfrak{A}\) and for the induced “modified” Hamiltonian flows \(\mathfrak{B}\) ⊂ sym ε ′EL is such that these properties are transferred to \(\mathfrak{B}\) and the recursions for ε′ EL are factored. We consider two examples associated with the two-dimensional Toda lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. V. Zhiber and V. V. Sokolov, Russ. Math. Surveys, 56, No.1, 61–101 (2001).

    Article  Google Scholar 

  2. F. Magri, J. Math. Phys., 19, 1156–1162 (1978).

    Article  Google Scholar 

  3. R. M. Miura, J. Math. Phys., 9, 1202–1204 (1968).

    Article  Google Scholar 

  4. A. V. Kiselev and A. V. Ovchinnikov, J. Dynam. Control Systems, 10, 431–451 (2004).

    Article  MathSciNet  Google Scholar 

  5. A. N. Leznov, V. G. Smirnov, and A. B. Shabat, Theor. Math. Phys., 51, 322–330 (1982).

    Article  Google Scholar 

  6. A. P. Fordy and J. Gibbons, J. Math. Phys., 21, 2508–2510 (1980); 22, 1170–1175 (1981).

    Article  Google Scholar 

  7. M. V. Pavlov, Fund. Prikl. Mat., 10, No.1, 175–182 (2004).

    MathSciNet  Google Scholar 

  8. Y. Nutku and M. V. Pavlov, J. Math. Phys., 43, 1441–1459 (2002).

    Article  Google Scholar 

  9. A. M. Vinogradov and I. S. Krasil’shchik, eds., Symmetries and Conservation Laws for Equations of Mathematical Physics [in Russian], Factorial, Moscow (1997); English transl.: I. S. Krasil’shchik and A. M. Vinogradov, eds., Symmetries and Conservation Laws for Differential Equations of Mathematical Physics, Amer. Math. Soc., Providence, R. I. (1999).

    Google Scholar 

  10. A. G. Meshkov, Theor. Math. Phys., 63, 539–545 (1985).

    Article  Google Scholar 

  11. G. Barnich, F. Brandt, and M. Henneaux, Comm. Math. Phys., 174, 57–92 (1995); hep-th/9405109 (1994).

    Google Scholar 

  12. A. V. Kiselev, Acta Appl. Math., 83, 175–182 (2004).

    Article  Google Scholar 

  13. C. S. Gardner, J. Math. Phys., 12, 1548–1551 (1971).

    Article  Google Scholar 

  14. P. Kersten, I. Krasil’shchik, and A. Verbovetsky, J. Geom. Phys., 50, 273–302 (2004).

    Article  Google Scholar 

  15. A. B. Shabat and R. I. Yamilov, “Exponential systems of type I and Cartan matrices,” Preprint, Bashkir Branch USSR Acad. Sci., Ufa (1981) [in Russian].

    Google Scholar 

  16. D. K. Demskoi and S. Ya. Startsev, Fund. Prikl. Mat., 10, No.1, 29–37 (2004).

    Google Scholar 

  17. P. J. Olver, Applications of Lie Groups to Differential Equations, Springer, New York (1993).

    Google Scholar 

  18. E. Getzler, Duke Math. J., 111, 535–560 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 144, No. 1, pp. 83–93, July, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiselev, A.V. Hamiltonian Flows on Euler-Type Equations. Theor Math Phys 144, 952–960 (2005). https://doi.org/10.1007/s11232-005-0122-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-005-0122-x

Keywords

Navigation