Skip to main content
Log in

The Maupertuis-Jacobi principle for Hamiltonians of the form F(x, |p|) in two-dimensional stationary semiclassical problems

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

We consider two-dimensional asymptotic formulas based on the Maslov canonical operator arising in stationary problems for differential and pseudodifferential equations. In the case of Lagrangian manifolds invariant with respect to Hamiltonian flow with Hamiltonians of the form F(x, |p|), we show how asymptotic formulas can be simplified by using the well-known (in classical mechanics) Maupertuis-Jacobi correspondence principle to replace the Hamiltonians F(x, |p|) by Hamiltonians of the form C(x)|p| arising, in particular, in geometric optics and related to the Finsler metric. As examples, we consider Hamiltonians corresponding to the Schrödinger equation, the two-dimensional Dirac equation, and the pseudodifferential equations for surface water waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Arnol’d,Mathematical Methods of Classical Mechanics (Nauka, Moscow, 1974) [in Russian].

    MATH  Google Scholar 

  2. R. Abraham and J. E. Marsden, Foundations of Mechanics (Benjamin-Cummings Publ., Reading, MA, 1978).

    MATH  Google Scholar 

  3. A. V. Tsiganov, “The Maupertuis principle and canonical transformations of the extended phase space,” J. Nonlinear Math. Phys. 8(1), 157–182 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  4. S. Yu. Dobrokhotov and M. Rouleux, “The semi-classical Maupertuis-Jacobi correspondence for quasi-periodic Hamiltonian flows with applications to linear water waves theory,” Asymptot. Anal. 74(1–2), 33–73 (2011).

    MATH  MathSciNet  Google Scholar 

  5. S. Yu. Dobrokhotov and M. Rouleux, “The semiclassical Maupertuis-Jacobi correspondence and applications to linear water wave theory,” Mat. Zametki 87(3), 458–463 (2010) [Math. Notes 87 (3–4), 430–435 (2010)].

    Article  MathSciNet  Google Scholar 

  6. Sobolev Spaces in Mathematics. III. Applications in Mathematical Physics, in Int. Math. Ser. (N. Y.) (Springer, 2009), Vol. 10.

  7. A. B. Katok, “Ergodic perturbations of degenerate integrable Hamiltonian systems,” Izv. Akad. Nauk SSSR Ser. Mat. 37(3), 539–576 (1973) [Math. USSR–Izv. 7, 535–571 (1974)].

    MathSciNet  Google Scholar 

  8. S. Yu. Dobrokhotov, G. N. Makrakis, V. E. Nazaikinskii, and T. Ya. Tudorovskii, “New formulas for the Maslov canonical operator in a neighborhood of focal points and caustics in two-dimensional semiclassical asymptotics,” Teoret. Mat. Fiz. 177(3), 355–386 (2013) [Theoret. and Math. Phys. 177 (3), 1579–1605 (2013)].

    Article  MathSciNet  Google Scholar 

  9. V. P. Maslov and M. V. Fedoryuk, Semiclassical Approximation for Equations of Quantum Mechanics (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  10. S. Yu. Dobrokhotov, A. I. Shafarevich, and B. Tirozzi, “Localized wave and vortical solutions to linear hyperbolic systems and their application to linear shallow water equations,” Russ. J. Math. Phys. 15(2), 192–221 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  11. V. P. Maslov, Perturbation Theory and Asymptotic Methods (Izd. Moskov. Univ., Moscow, 1965) [in Russian].

    Google Scholar 

  12. B. R. Vainberg, Asymptotic Methods in Equations of Mathematical Physics (Izd. Moskov. Univ., Moscow, 1982) [in Russian].

    MATH  Google Scholar 

  13. V. V. Kucherenko, “The semiclassical asymptotic behavior of a point source function for a stationary Schrödinger equation,” Teoret. Mat. Fiz. 1(3), 384–406 (1969).

    MathSciNet  Google Scholar 

  14. M. I. Katsnelson, Graphene: Carbon in Two Dimensions (Cambridge Univ. Press, Cambridge, 2012).

    Book  Google Scholar 

  15. S. Yu. Dobrokhotov, “Maslov’s methods in the linearized theory of gravitational waves on a fluid surface,” Dokl. Akad. Nauk SSSR 269(1), 76–80 (1983) [SovietMath. Dokl. 28, 229–231 (1983)].

    MathSciNet  Google Scholar 

  16. S. Dobrokhotov and P. Zhevandrov, “Asymptotic expansions and the Maslov canonical operator in the linear theory of water waves. I. Main constructions and equations for surface gravity waves,” Russ. J. Math. Phys. 10(1), 1–31 (2003).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Dobrokhotov.

Additional information

Original Russian Text © S. Yu. Dobrokhotov, D. S. Minenkov, M. Rouleux, 2015, published in Matematicheskie Zametki, 2015, Vol. 97, No. 1, pp. 48–57.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobrokhotov, S.Y., Minenkov, D.S. & Rouleux, M. The Maupertuis-Jacobi principle for Hamiltonians of the form F(x, |p|) in two-dimensional stationary semiclassical problems. Math Notes 97, 42–49 (2015). https://doi.org/10.1134/S0001434615010058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434615010058

Keywords

Navigation