Skip to main content
Log in

Nonlocal Symmetries of Integrable Linearly Degenerate Equations: A Comparative Study

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We continue the study of Lax integrable equations. We consider four three-dimensional equations: (1) the rdDym equation uty = uxuxy − uyuxx, (2) the Pavlov equation uyy = utx + uyuxx − uxuxy, (3) the universal hierarchy equation uyy = utuxy − uyutx, and (4) the modified Veronese web equation uty = utuxy − uyutx. For each equation, expanding the known Lax pairs in formal series in the spectral parameter, we construct two differential coverings and completely describe the nonlocal symmetry algebras associated with these coverings. For all four pairs of coverings, the obtained Lie algebras of symmetries manifest similar (but not identical) structures; they are (semi)direct sums of the Witt algebra, the algebra of vector fields on the line, and loop algebras, all of which contain a component of finite grading. We also discuss actions of recursion operators on shadows of nonlocal symmetries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Baran, I. S. Krasil’shchik, O. I. Morozov, and P. Vojčák, “Symmetry reductions and exact solutions of Lax integrable 3–dimensional systems,” J. Nonlinear Math. Phys., 21, 643–671 (2014); arXiv:1407.0246v1 [nlin.SI] (2014).

    Article  MathSciNet  Google Scholar 

  2. H. Baran, I. S. Krasil’shchik, O. I. Morozov, and P. Vojčák, “Integrability properties of some equations obtained by symmetry reductions,” J. Nonlinear Math. Phys., 22, 210–232 (2015); arXiv:1412.6461v1 [nlin.SI] (2014).

    Article  MathSciNet  Google Scholar 

  3. J. Gibbons and S. P. Tsarev, “Reductions of the Benney equations,” Phys. Lett. A, 211, 19–24 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. H. Baran, I. S. Krasil’shchik, O. I. Morozov, and P. Vojčák, “Coverings over Lax integrable equations and their nonlocal symmetries,” Theor. Math. Phys., 188, 1273–1295 (2016); arXiv:1507.00897v2 [nlin.SI] (2015).

    Article  MATH  Google Scholar 

  5. E. V. Ferapontov and J. Moss, “Linearly degenerate partial differential equations and quadratic line complexes,” Commun. Anal. Geom., 23, 91–127 (2015); arXiv:1204.2777v1 [math.DG] (2012).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. M. Vinogradov and I. S. Krasil’shchik, eds., Symmetries and Conservation Laws for Differential Equations of Mathematical Physics [in Russian], Faktorial, Moscow (2005); English transl. prev. ed.: I. S. Krasil’shchik and A. M. Vinogradov, eds. Symmetries and Conservation Laws for Differential Equations of Mathematical Physics (Transl. Math. Monogr., Vol. 182), Amer. Math. Soc., Providence, RI (1999).

    Google Scholar 

  7. I. S. Krasil’shchik and A. M. Vinogradov, “Nonlocal trends in the geometry of differential equations: Symmetries, conservation laws, and Bäcklund transformations,” Acta Appl. Math., 15, 161–209 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Marvan, “Another look on recursion operators,” in: Differential Geometry and Applications (Brno, 28 August–1 September 1995, J. Janyška, I. Kolár, and J. Slovák, eds.), Masaryk Univ., Brno (1996), pp. 393–402.

    Google Scholar 

  9. M. Blaszak, “Classical R–matrices on Poisson algebras and related dispersionless systems,” Phys. Lett. A, 297, 191–195 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. V. Ovsienko, “Bi–Hamiltonian nature of the equation utx = uxyuy − uyyux,” Adv. Pure Appl. Math., 1, 7–17 (2010).

    Article  MathSciNet  Google Scholar 

  11. M. V. Pavlov, “The Kupershmidt hydrodynamics chains and lattices,” Internat. Math. Res. Not., 2006, 46987 (2006).

    MathSciNet  MATH  Google Scholar 

  12. O. I. Morozov, “Recursion operators and nonlocal symmetries for integrable rmdKP and rdDym equations,” arXiv:1202.2308v2 [nlin.SI] (2012).

    Google Scholar 

  13. M. Dunajski, “A class of Einstein–Weil spaces associated to an integrable system of hydrodynamic type,” J. Geom. Phys., 51, 126–137 (2004); arXiv:nlin/0311024v2 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. M. V. Pavlov, “Integrable hydrodynamic chains,” J. Math. Phys., 44, 4134–4156 (2003); arXiv:nlin/0301010v1 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. L. Martínez Alonso and A. B. Shabat, “Energy–dependent potentials revisited: A universal hierarchy of hydrodynamic type,” Phys. Lett. A, 299, 359–365 (2002); arXiv:nlin/0202008v1 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. L. Martínez Alonso and A. B. Shabat, “Hydrodynamic reductions and solutions of a universal hierarchy,” Theor. Math. Phys., 140, 1073–1085 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  17. O. I. Morozov, “A recursion operator for the universal hierarchy equation via Cartan’s method of equivalence,” Cent. Eur. J. Math., 12, 271–283 (2014); arXiv:1205.5748v1 [nlin.SI] (2012).

    MathSciNet  MATH  Google Scholar 

  18. V. E. Adler and A. B. Shabat, “Model equation of the theory of solitons,” Theor. Math. Phys., 153, 1373–1387 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  19. I. Zakharevich, “Nonlinear wave equation, nonlinear Riemann problem, and the twistor transform of Veronese webs,” arXiv:math–ph/0006001v1 (2000).

    Google Scholar 

  20. M. Dunajski and W. Krýnski, “Einstein–Weyl geometry, dispersionless Hirota equation, and Veronese webs,” Math. Proc. Cambridge Philos. Soc., 157, 139–150 (2014); arXiv:1301.0621v2 [math.DG] (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. M. Schlichenmaier, Krichever–Novikov Type Algebras: Theory and Applications (De Gruyter Stud. Math., Vol. 53), De Gruyter, Berlin (2014).

    Book  MATH  Google Scholar 

  22. A. Sergyeyev, “A simple construction of recursion operators for multidimensional dispersionless integrable systems,” J. Math. Anal. Appl., 454, 468–480 (2017); arXiv:1501.01955v4 [math.AP] (2015).

    Article  MathSciNet  MATH  Google Scholar 

  23. A. A. Malykh, Y. Nutku, and M. B. Sheftel, “Partner symmetries and non–invariant solutions of four–dimensional heavenly equations,” J. Phys. A.: Math. Theor., 37, 7527–7546 (2004); arXiv:math–ph/0403020v3 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. M. Marvan and A. Sergyeyev, “Recursion operators for dispersionless integrable systems in any dimension,” Inverse Probl., 28, 025011 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. O. I. Morozov and A. Sergyeyev, “The four–dimensional Martínez Alonso–Shabat equation: Reductions and nonlocal symmetries,” J. Geom. Phys., 85, 40–45 (2014); arXiv:1401.7942v2 [nlin.SI] (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. B. Kruglikov and O. Morozov, “Integrable dispersionless PDEs in 4D, their symmetry pseudogroups, and deformations,” Lett. Math. Phys., 105, 1703–1723 (2015); arXiv:1410.7104v2 [math–ph] (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. H. Baran, I. S. Krasil’shchik, O. I. Morozov, and P. Vojčák, “Five–dimensional Lax–integrable equation, its reductions, and recursion operator,” Lobachevskii J. Math., 36, 225–233 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  28. O. I. Morozov and M. V. Pavlov, “Bäcklund transformations between four Lax–integrable 3D equations,” J. Nonlinear Math. Phys., 24, 465–468 (2017); arXiv:1611.04036v1 [nlin.SI] (2016).

    Article  MathSciNet  Google Scholar 

  29. H. Baran and M. Marvan, “Jets: A software for differential calculus on Jet spaces and diffieties,” http://jets.math.slu.cz (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Baran.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 196, No. 2, pp. 169–192, August, 2018.

The research of I. S. Krasilshchik was supported in part by a grant “Dobrushin Professorship–2017.”

The research of O. I. Morozov was supported by the Polish Ministry of Science and Higher Education.

The research of H. Baran and P. Vojčák was supported by RVO funding for IČ47813059.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baran, H., Krasilshchik, I.S., Morozov, O.I. et al. Nonlocal Symmetries of Integrable Linearly Degenerate Equations: A Comparative Study. Theor Math Phys 196, 1089–1110 (2018). https://doi.org/10.1134/S0040577918080019

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577918080019

Keywords

Navigation