Skip to main content
Log in

The case of the missing satellites

  • S.I. : Modeling and Representation
  • Published:
Synthese Aims and scope Submit manuscript

Abstract

In the late 1990s, computational technology had advanced sufficiently that astrophysicists were able to construct reasonably high resolution computer simulations of the Local Group of galaxies. These simulations indicated there should be around 250 small satellite galaxies orbiting the Milky Way and Andromeda. In the real Local Group, however, only around 40 satellites had been observed, and only twenty or so more have been discovered since then. Despite this discrepancy in numbers, claims have been made in recent years that the ‘missing satellites problem’ has been solved. Using the examples of the constructed luminosity curve, and hydrodynamic simulations, this paper explores how simulations are used in conjunction with observation to ‘solve’ the missing satellites problem. It is suggested that the simulated universes have sufficient complexity to be (temporarily) understood as worlds in their own right, ones that can be measured and observed. By demonstrating that these virtual worlds are sufficiently ‘realistic’ with respect to observations, astrophysicists are able to make a robust argument for the existence of ‘dark’, non-observable astrophysical objects. Observational and simulated data are combined to demonstrate the plausibility—a term that develops more ontologically meaningful connotations—of both the existence and the maintenance of dark satellites. It is thus through the conflation of the real and virtual worlds, the blending of simulation data with empirical data, that the missing satellites problem is ‘solved’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reprinted by permission from Macmillan Publishers Ltd: Nature (Vogelsberger et al. 2014a, p. 178, figure b and 1c), copyright 2014. (Color figure online)

Fig. 2

© AAS. Reproduced with permission. (Color figure online)

Similar content being viewed by others

Notes

  1. Morgan refers to this as a ‘kind of experiment’, and the similarities to experiment are further compounded in the context of simulation. The ‘double life’ of enquiring ‘into’ and ‘with’ also has connections to understanding how simulation is described as both theory and experiment (Wilson 2016).

  2. Part of the motivation for developing the simulations was an analytic study conducted by Kauffmann et al. (1993), which suggested that galaxies should contain more satellites than were observed.

  3. SDSS-I finished releasing data in 2006 with the publication of SDSS Data Release 5 (DR5). The survey continues today with SDSS-III up to DR12 (2015), and SDSS-IV predicted for the future (http://www.sdss.org).

  4. Previous hydrodynamic simulations “either did not cover a large enough portion of the Universe to be representative, lacked adequate resolution, or failed to reach the present epoch” (Vogelsberger et al. 2014a, p. 177).

References

  • Adelman-McCarthy, J. K., Agueros, M. A., Allam, S. S., Anderson, K. S. J., Anderson, S. F., Annis, J., et al. (2007). The fifth data release of the Sloan Digital Sky Survey. The Astrophysical Journal Supplement Series, 172(2), 634–644. doi:10.1086/518864.

    Article  Google Scholar 

  • Anderson, B., Kuhlen, M., Diemand, J., Johnson, R. P., & Madau, P. (2010). Fermi-LAT sensitivity to dark matter annihilation in Via Lactea II substructure. The Astrophysical Journal, 718(2), 899–904. doi:10.1088/0004-637x/718/2/899.

    Article  Google Scholar 

  • Belokurov, V., Zucker, D. B., Evans, N. W., Kleyna, J. T., Koposov, S., Hodgkin, S. T., et al. (2007). Cats and dogs, hair and a hero: A quintet of new Milky Way companions. The Astrophysical Journal, 654(2), 897–906. doi:10.1086/509718.

    Article  Google Scholar 

  • Bode, P., Ostriker, J. P., & Turok, N. (2001). Halo formation in warm dark matter models. The Astrophysical Journal, 556(1), 93–107. doi:10.1086/321541.

    Article  Google Scholar 

  • Boylan-Kolchin, M., Springel, V., White, S. D. M., Jenkins, A., & Lemson, G. (2009). Resolving cosmic structure formation with the Millennium-II Simulation. Monthly Notices of the Royal Astronomical Society, 398(3), 1150–1164. doi:10.1111/j.1365-2966.2009.15191.x.

    Article  Google Scholar 

  • Bullock, J. S., Kravtsov, A. V., & Weinberg, D. H. (2000). Reionization and the abundance of galactic satellites. The Astrophysical Journal, 539(2), 517–521. doi:10.1086/309279.

    Article  Google Scholar 

  • Cameron, F. (2007). Beyond the cult of the replicant: Museums and historical digital objects—traditional concerns, new discourses. In F. Cameron & S. Kenderdine (Eds.), Theorizing digital cultural heritage: A critical discourse (pp. 49–75). Cambridge: Massachusetts Institute of Technology.

    Chapter  Google Scholar 

  • Crain, R. A., Schaye, J., Bower, R. G., Furlong, M., Schaller, M., Theuns, T., et al. (2015). The EAGLE simulations of galaxy formation: Calibration of subgrid physics and model variations. Monthly Notices of the Royal Astronomical Society, 450(2), 1937–1961. doi:10.1093/mnras/stv725.

    Article  Google Scholar 

  • Daston, L., & Galison, P. (2007). Objectivity. New York: Zone Books.

    Google Scholar 

  • Diemand, J., Kuhlen, M., & Madau, P. (2007). Formation and evolution of galaxy dark matter halos and their substructure. The Astrophysical Journal, 667(2), 859–877. doi:10.1086/520573.

    Article  Google Scholar 

  • Diemand, J., Kuhlen, M., Madau, P., Zemp, M., Moore, B., Potter, D., et al. (2008). Clumps and streams in the local dark matter distribution. Nature, 454(7205), 735–738. doi:10.1038/nature07153.

    Article  Google Scholar 

  • Dowling, D. (1998). Experiments on theories: The construction of scientific computer simulation. PhD, University of Melbourne, Melbourne.

  • Dowling, D. (1999). Experimenting on theories. Science in Context, 12(2), 261–273.

    Article  Google Scholar 

  • Font, A. S., Benson, A. J., Bower, R. G., Frenk, C. S., Cooper, A., DeLucia, G., et al. (2011). The population of Milky Way satellites in the \(\Lambda \) cold dark matter cosmology. Monthly Notices of the Royal Astronomical Society, 417(2), 1260–1279. doi:10.1111/j.1365-2966.2011.19339.x.

    Article  Google Scholar 

  • Galison, P. (1996). Computer simulations and the trading zone. In P. Galison & D. J. Stump (Eds.), The disunity of science: Boundaries, contexts, and power (pp. 118–157). Stanford: Stanford Universty Press.

    Google Scholar 

  • Galison, P. (1997). Image and logic: A material culture of microphysics. Chicago: The University of Chicago Press.

    Google Scholar 

  • Gelfert, A. (2009). Rigorous results, cross-model justification, and the transfer of empirical warrant: The case of many-body models in physics. Synthese, 169(3), 497–519. doi:10.1007/s11229-008-9431-6.

    Article  Google Scholar 

  • Gelfert, A. (2016). How to do science with models: A philosophical primer. Berlin: Springer.

    Book  Google Scholar 

  • Guillemot, H. (2010). Connections between simulations and observation in climate computer modeling. Scientist’s practices and “bottom-up epistemology” lessons. Studies in History and Philosophy of Modern Physics, 41(3), 242–252. doi:10.1016/j.shpsb.2010.07.003.

    Article  Google Scholar 

  • Ihde, D. (2006). Models, models everywhere. In G. Küppers, J. Lenhard, & T. Shinn (Eds.), Simulation: Pragmatic construction of reality (pp. 79–86). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Kauffmann, G., White, S. D. M., & Guiderdoni, B. (1993). The formation and evolution of galaxies within merging dark matter haloes. Monthly Notices of the Royal Astronomical Society, 264, 201–218.

    Article  Google Scholar 

  • Klypin, A., Gottlöber, S., Kravtsov, A., & Khokhlov, A. (1999a). Galaxies in N-body simulations: Overcoming the overmerging problem. The Astrophysical Journal, 516(2), 530–551. doi:10.1086/307122.

    Article  Google Scholar 

  • Klypin, A., Kravtsov, A. V., Valenzuela, O., & Prada, F. (1999b). Where are the missing galactic satellites? The Astrophysical Journal, 522(1), 82–92. doi:10.1086/307643.

    Article  Google Scholar 

  • Kravtsov, A. (2010). Dark matter substructure and dwarf galactic satellites. Advances in Astronomy, 2010, 1–21. doi:10.1155/2010/281913.

    Article  Google Scholar 

  • Macciò, A. V., Kang, X., Fontanot, F., Somerville, R. S., Koposov, S., & Monaco, P. (2010). Luminosity function and radial distribution of Milky Way satellites in a \(\Lambda \text{ CDM }\) Universe. Monthly Notices of the Royal Astronomical Society, 402(3), 1995–2008. doi:10.1111/j.1365-2966.2009.16031.x.

    Article  Google Scholar 

  • Mateo, M. (1998). Dwarf galaxies of the local group. Annual Review of Astronomy and Astrophysics, 36, 435–506. doi:10.1146/annurev.astro.36.1.435.

    Article  Google Scholar 

  • Moore, B., Ghigna, S., Governato, F., Lake, G., Quinn, T., Stadel, J., et al. (1999). Dark matter substructure within galactic halos. The Astrophysical Journal, 524(1), L19–L22. doi:10.1086/312287.

    Article  Google Scholar 

  • Morgan, M. S. (2012). The world in the model: How economists work and think. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Morrison, M., & Morgan, M. S. (1999). Models as mediating instruments. In M. S. Morgan & M. Morrison (Eds.), Models as mediators: Perspectives on natural and social science (pp. 10–37). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • NASA (2016). Fermi Gamma-ray Space Telescope. https://www.nasa.gov/content/fermi-gamma-ray-space-telescope. Accessed December 2016.

  • Press, W. H., & Davis, M. (1982). How to identify and weigh virialized clusters of galaxies in a complete redshift catalog. The Astrophysical Journal, 259(2), 449–473. doi:10.1086/160183.

    Article  Google Scholar 

  • Rohrlich, F. (1990). Computer simulation in the physical sciences. In PSA: Proceedings of the biennial meeting of the philosophy of science association (Vol. 1990, No. 2, pp. 507–518).

  • Roundtree, A. K. (2010). The rhetoric of computer simulations in astrophysics: A case study. JCOM: Journal of Science Communication, 9(3), 1–9.

    Google Scholar 

  • Ruphy, S. (2015). Computer simulations: A new mode of scientific inquiry? In S. O. Hansson (Ed.), The role of technology in science: Philosophical perspectives (pp. 131–148). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Sawala, T., Frenk, C. S., Fattahi, A., Navarro, J. F., Bower, R. G., Crain, R. A., et al. (2014). Local Group galaxies emerge from the dark. arXiv:1412.2748.

  • Schaye, J., Crain, R. A., Bower, R. G., Furlong, M., Schaller, M., Theuns, T., et al. (2015). The EAGLE project: Simulating the evolution and assembly of galaxies and their environments. Monthly Notices of the Royal Astronomical Society, 446(1), 521–554. doi:10.1093/mnras/stu2058.

    Article  Google Scholar 

  • Sellwood, J. A., & Moore, E. M. (1999). On the formation of disk galaxies and massive central objects. The Astrophysical Journal, 510(1), 125–135. doi:10.1086/306557.

    Article  Google Scholar 

  • Simon, J. D., & Geha, M. (2007). The kinematics of the ultra-faint milky way satellites: Solving the missing satellite problem. The Astrophysical Journal, 670(1), 313–331. doi:10.1086/521816.

    Article  Google Scholar 

  • Springel, V., Wang, J., Vogelsberger, M., Ludlow, A., Jenkins, A., Helmi, A., et al. (2008). The Aquarius Project: The subhaloes of galactic haloes. Monthly Notices of the Royal Astronomical Society, 391(4), 1685–1711. doi:10.1111/j.1365-2966.2008.14066.x.

    Article  Google Scholar 

  • Springel, V., White, S. D. M., Jenkins, A., Frenk, C. S., Yoshida, N., Gao, L., et al. (2005). Simulations of the formation, evolution and clustering of galaxies and quasars. Nature, 435(7042), 629–636. doi:10.1038/nature03597.

    Article  Google Scholar 

  • Sundberg, M. (2012). Creating convincing simulations in astrophysics. Science, Technology & Human Values, 37(1), 64–87. doi:10.1177/0162243910385417.

    Article  Google Scholar 

  • Tollerud, E. J., Bullock, J. S., Strigari, L. E., & Willman, B. (2008). Hundreds of Milky Way satellites? Luminosity bias in the satellite luminosity function. The Astrophysical Journal, 688(1), 277–289. doi:10.1086/592102.

    Article  Google Scholar 

  • Turkle, S. (2009). Simulation and its discontents. Cambridge, MA: The MIT Press.

    Book  Google Scholar 

  • Vogelsberger, M., Genel, S., Springel, V., Torrey, P., Sijacki, D., Xu, D., et al. (2014a). Properties of galaxies reproduced by a hydrodynamic simulation. Nature, 509(7499), 177–182. doi:10.1038/nature13316.

    Article  Google Scholar 

  • Vogelsberger, M., Genel, S., Springel, V., Torrey, P., Sijacki, D., Xu, D. D., et al. (2014b). Introducing the Illustris Project: Simulating the coevolution of dark and visible matter in the Universe. Monthly Notices of the Royal Astronomical Society, 444(2), 1518–1547. doi:10.1093/mnras/stu1536.

    Article  Google Scholar 

  • Wilson, K. (2016). Astrophysics in simulacrum: The epistemological role of computer simulations in dark matter studies. PhD, University of Melbourne, Melbourne.

  • Winsberg, E. (2010). Science in the age of computer simulation. Chicago: The University of Chicago Press.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katia Wilson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, K. The case of the missing satellites. Synthese 198 (Suppl 21), 1–21 (2021). https://doi.org/10.1007/s11229-017-1509-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-017-1509-6

Keywords

Navigation