Skip to main content

Cosmic Large-Scale Structure in the IllustrisTNG Simulations

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ' 17

Abstract

We have finished two new, extremely large hydrodynamical simulations of galaxy formation that significantly advance the state of the art in cosmology. Together with accompanying dark matter only runs, we call them ‘IllustrisTNG’, the next generation Illustris simulations. Our largest and most ambitious calculation follows a cosmological volume 300 megaparsecs on a side and self-consistently solves the equations of magnetohydrodynamics and self-gravity coupled to the fundamental physical processes driving galaxy formation. We have employed AREPO, a sophisticated moving-mesh code developed by our team over the past 7 years and equipped with an improved, multi-purpose galaxy formation physics model. The simulated universe contains tens of thousands of galaxies encompassing a variety of environments, mass scales and evolutionary stages. The groundbreaking volume of TNG enables us to sample statistically significant sets of rare astrophysical objects like rich galaxy clusters, and to study galaxy formation and the spatial clustering of matter over a very large range of spatial scales. Here we report some early results on the matter and galaxy clustering found in the simulations. The two-point galaxy correlation function of our largest simulation agrees extremely well with the best available observational constraints from the Sloan Digital Sky Survey, both as a function of galaxy stellar mass and color. The predicted impact of baryonic physics on the matter power spectrum is sizeable and needs to be taken into account in precision studies of cosmology. Interestingly, this impact appears to be fairly robust to the details of the modelling of supermassive black holes, provided this reproduces the scaling properties of the intracluster medium of galaxy clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Previously, as in [24], we alluded to the corresponding simulations as ‘Illustris++’ instead of ‘IllustrisTNG’. Both names refer to the same project.

References

  1. V. Springel, T. Di Matteo, L. Hernquist, Mon. Not. R. Astron. Soc. 361, 776 (2005). https://doi.org/10.1111/j.1365-2966.2005.09238.x

    Article  Google Scholar 

  2. J. Kim, C. Park, G. Rossi, S.M. Lee, J.R. Gott III., J. Kor. Astrono. Soc. 44, 217 (2011). https://doi.org/10.5303/JKAS.2011.44.6.217

  3. S.W. Skillman, M.S. Warren, M.J. Turk, R.H. Wechsler, D.E. Holz, P.M. Sutter (2014). arXiv e-prints 1407.2600

    Google Scholar 

  4. J. Schaye, R.A. Crain, R.G. Bower, M. Furlong, M. Schaller, T. Theuns, C. Dalla Vecchia, C.S. Frenk, I.G. McCarthy, J.C. Helly, A. Jenkins, Y.M. Rosas-Guevara, S.D.M. White, M. Baes, C.M. Booth, P. Camps, J.F. Navarro, Y. Qu, A. Rahmati, T. Sawala, P.A. Thomas, J. Trayford, Mon. Not. R. Astron. Soc. 446, 521 (2015). https://doi.org/10.1093/mnras/stu2058

    Article  Google Scholar 

  5. Y. Dubois, C. Pichon, C. Welker, D. Le Borgne, J. Devriendt, C. Laigle, S. Codis, D. Pogosyan, S. Arnouts, K. Benabed, E. Bertin, J. Blaizot, F. Bouchet, J.F. Cardoso, S. Colombi, V. de Lapparent, V. Desjacques, R. Gavazzi, S. Kassin, T. Kimm, H. McCracken, B. Milliard, S. Peirani, S. Prunet, S. Rouberol, J. Silk, A. Slyz, T. Sousbie, R. Teyssier, L. Tresse, M. Treyer, D. Vibert, M. Volonteri, Mon. Not. R. Astron. Soc. 444, 1453 (2014). https://doi.org/10.1093/mnras/stu1227

    Article  Google Scholar 

  6. M. Vogelsberger, S. Genel, V. Springel, P. Torrey, D. Sijacki, D. Xu, G. Snyder, S. Bird, D. Nelson, L. Hernquist, Nature 509, 177 (2014). https://doi.org/10.1038/nature13316

    Article  Google Scholar 

  7. M. Vogelsberger, S. Genel, V. Springel, P. Torrey, D. Sijacki, D. Xu, G. Snyder, D. Nelson, L. Hernquist, Mon. Not. R. Astron. Soc. 444, 1518 (2014). https://doi.org/10.1093/mnras/stu1536

    Article  Google Scholar 

  8. S. Genel, M. Vogelsberger, V. Springel, D. Sijacki, D. Nelson, G. Snyder, V. Rodriguez-Gomez, P. Torrey, L. Hernquist, Mon. Not. R. Astron. Soc. 445, 175 (2014). https://doi.org/10.1093/mnras/stu1654

    Article  Google Scholar 

  9. J. Guedes, S. Callegari, P. Madau, L. Mayer, Astrophys. J. 742, 76 (2011). https://doi.org/10.1088/0004-637X/742/2/76

    Article  Google Scholar 

  10. G.S. Stinson, C. Brook, A.V. Macciò, J. Wadsley, T.R. Quinn, H.M.P. Couchman, Mon. Not. R. Astron. Soc. 428, 129 (2013). https://doi.org/10.1093/mnras/sts028

    Article  Google Scholar 

  11. P.F. Hopkins, D. Kereš, J. Oñorbe, C.A. Faucher-Giguère, E. Quataert, N. Murray, J.S. Bullock, Mon. Not. R. Astron. Soc. 445, 581 (2014). https://doi.org/10.1093/mnras/stu1738

    Article  Google Scholar 

  12. R.J.J. Grand, F.A. Gómez, F. Marinacci, R. Pakmor, V. Springel, D.J.R. Campbell, C.S. Frenk, A. Jenkins, S.D.M. White, Mon. Not. R. Astron. Soc. 467, 179 (2017). https://doi.org/10.1093/mnras/stx071

    Google Scholar 

  13. O. Agertz, A.V. Kravtsov, Astrophys. J. 824, 79 (2016). https://doi.org/10.3847/0004-637X/824/2/79

    Article  Google Scholar 

  14. V. Biffi, F. Sembolini, M. De Petris, R. Valdarnini, G. Yepes, S. Gottlöber, Mon. Not. R. Astron. Soc. 439, 588 (2014). http://dx.doi.org/http://dx.doi.org/10.1093/mnras/stu018

    Article  Google Scholar 

  15. A.M.C. Le Brun, I.G. McCarthy, J. Schaye, T.J. Ponman, Mon. Not. R. Astron. Soc. 441, 1270 (2014). http://dx.doi.org/http://dx.doi.org/10.1093/mnras/stu608

    Article  Google Scholar 

  16. S. Planelles, S. Borgani, D. Fabjan, M. Killedar, G. Murante, G.L. Granato, C. Ragone-Figueroa, K. Dolag, Mon. Not. R. Astron. Soc. 438, 195 (2014). http://dx.doi.org/http://dx.doi.org/10.1093/mnras/stt2141

    Article  Google Scholar 

  17. S. Bocquet, A. Saro, K. Dolag, J.J. Mohr, Mon. Not. R. Astron. Soc. 456, 2361 (2016). http://dx.doi.org/http://dx.doi.org/10.1093/mnras/stv2657

    Article  Google Scholar 

  18. I.G. McCarthy, J. Schaye, S. Bird, A.M.C. Le Brun, Mon. Not. R. Astron. Soc. 465, 2936 (2017). https://doi.org/10.1093/mnras/stw2792

    Article  Google Scholar 

  19. V. Springel, Mon. Not. R. Astron. Soc. 401, 791 (2010). https://doi.org/10.1111/j.1365-2966.2009.15715.x

    Article  Google Scholar 

  20. M. Vogelsberger, S. Genel, D. Sijacki, P. Torrey, V. Springel, L. Hernquist, Mon. Not. R. Astron. Soc. 436, 3031 (2013). https://doi.org/10.1093/mnras/stt1789

    Article  Google Scholar 

  21. P. Torrey, M. Vogelsberger, S. Genel, D. Sijacki, V. Springel, L. Hernquist, Mon. Not. R. Astron. Soc. 438, 1985 (2014). https://doi.org/10.1093/mnras/stt2295

    Article  Google Scholar 

  22. D. Nelson, A. Pillepich, S. Genel, M. Vogelsberger, V. Springel, P. Torrey, V. Rodriguez-Gomez, D. Sijacki, G.F. Snyder, B. Griffen, F. Marinacci, L. Blecha, L. Sales, D. Xu, L. Hernquist, Astron. Comput. 13, 12 (2015). https://doi.org/10.1016/j.ascom.2015.09.003

    Article  Google Scholar 

  23. G.F. Snyder, P. Torrey, J.M. Lotz, S. Genel, C.K. McBride, M. Vogelsberger, A. Pillepich, D. Nelson, L.V. Sales, D. Sijacki, L. Hernquist, V. Springel, Mon. Not. R. Astron. Soc. 454, 1886 (2015). https://doi.org/10.1093/mnras/stv2078

    Article  Google Scholar 

  24. V. Springel, A. Pillepich, R. Weinberger, R. Pakmor, L. Hernquist, D. Nelson, S. Genel, M. Vogelsberger, F. Marinacci, J. Naiman, P. Torrey, in High Performance Computing in Science and Engineering 16: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2016, ed. by W.E. Nagel, D.H. Kröner, M.M. Resch (Springer International Publishing, Cham, 2016), pp. 5–20. https://doi.org/10.1007/978-3-319-47066-5_1

    Google Scholar 

  25. R. Weinberger, V. Springel, L. Hernquist, A. Pillepich, F. Marinacci, R. Pakmor, D. Nelson, S. Genel, M. Vogelsberger, J. Naiman, P. Torrey, Mon. Not. R. Astron. Soc. 465, 3291 (2017). https://doi.org/10.1093/mnras/stw2944

    Article  Google Scholar 

  26. A. Pillepich, V. Springel, D. Nelson, S. Genel, J. Naiman, R. Pakmor, L. Hernquist, P. Torrey, M. Vogelsberger, R. Weinberger, F. Marinacci (2017). arXiv e-prints 1703.02970

    Google Scholar 

  27. Planck Collaboration, P.A.R. Ade, N. Aghanim, C. Armitage-Caplan, M. Arnaud, M. Ashdown, F. Atrio-Barandela, J. Aumont, C. Baccigalupi, A.J. Banday et al., Astron. Astrophys. 571, A16 (2014). https://doi.org/10.1051/0004-6361/201321591

  28. R. Pakmor, V. Springel, Mon. Not. R. Astron. Soc. 432, 176 (2013). https://doi.org/10.1093/mnras/stt428

    Article  Google Scholar 

  29. R. Pakmor, F. Marinacci, V. Springel, Astrophys. J. 783, L20 (2014). https://doi.org/10.1088/2041-8205/783/1/L20

    Article  Google Scholar 

  30. W.A. Hellwing, M. Schaller, C.S. Frenk, T. Theuns, J. Schaye, R.G. Bower, R.A. Crain, Mon. Not. R. Astron. Soc. 461, L11 (2016). https://doi.org/10.1093/mnrasl/slw081

    Article  Google Scholar 

  31. Q. Guo, S. White, M. Boylan-Kolchin, G. De Lucia, G. Kauffmann, G. Lemson, C. Li, V. Springel, S. Weinmann, Mon. Not. R. Astron. Soc. 413, 101 (2011). https://doi.org/10.1111/j.1365-2966.2010.18114.x

    Article  Google Scholar 

  32. B.M.B. Henriques, S.D.M. White, P.A. Thomas, R.E. Angulo, Q. Guo, G. Lemson, W. Wang, Mon. Not. R. Astron. Soc. 469, 2626 (2017). https://doi.org/10.1093/mnras/stx1010

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge computer time through the project GCS-ILLU on Hornet/HazelHen at HLRS. We acknowledge financial support through subproject EXAMAG of the Priority Programme 1648 ‘SPPEXA’ of the German Science Foundation, and through the European Research Council through ERC-StG grant EXAGAL-308037, and we would like to thank the Klaus Tschira Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Springel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Springel, V. et al. (2018). Cosmic Large-Scale Structure in the IllustrisTNG Simulations. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ' 17 . Springer, Cham. https://doi.org/10.1007/978-3-319-68394-2_2

Download citation

Publish with us

Policies and ethics