Skip to main content
Log in

A conceptual investigation of the effect of random numbers over the performance of metaheuristic algorithms

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

A lot of research studies focus on the development of a new algorithm or the techniques which improve the performance of the original algorithm. Very few studies conduct the research on the effect of the initial population on the solution quality of algorithms. However, in these studies, one or two algorithms have been used, and a limited number of problems have been handled. To fill in the gap in the literature, this study presents a comprehensive analysis of the five algorithms on the effect of the initial population on their final results including both the numerical and real-world problems along with a wide variety of types of distributions. The study consisted of three rounds and followed the strategy for determining the candidate algorithms to be participated in the next rounds, supported by the statistical tests. Rather than using popular random numbers, fourteen different distributions are used to imitate the random numbers in the initial population generation mechanisms of the algorithms. Two different numerical benchmark sets along with nine real-world problems are used to evaluate the performance of the algorithms. The results are compared with the original ones and other distribution-integrated algorithms. Since knowledge of the appropriate random number source is not available a priori, this study could be a good foundation for future studies not only on the matter of the effect of several distributions on the performances of the algorithms but also introducing an alternative way in generating an initial population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Jeong YS, Oh KJ, Cho CK, Choi HJ (2020) Pseudo-random number generation using LSTMs. J Supercomput 76:8324–8342. https://doi.org/10.1007/s11227-020-03229-7

    Article  Google Scholar 

  2. Ciglarič T, Češnovar R, Štrumbelj E (2019) An OpenCL library for parallel random number generators. J Supercomput 75:3866–3881. https://doi.org/10.1007/s11227-019-02756-2

    Article  Google Scholar 

  3. Hussain K, Salleh MNM, Cheng S, Shi Y (2019) Metaheuristic research: a comprehensive survey. Artif Intell Rev 52:2191–2233. https://doi.org/10.1007/s10462-017-9605-z

    Article  Google Scholar 

  4. Malik H, Iqbal A, Joshi P, Agrawal S, Bakhsh FI (eds) (2021) Metaheuristic and Evolutionary Computation: Algorithms and Applications. In: Studies in Computational Intelligence. Springer, Singapore. https://doi.org/10.1007/978-981-15-7571-6_10

  5. Cheng R, Jin Y (2014) A competitive swarm optimizer for large scale optimization. IEEE Trans Cybern 45:191–204. https://doi.org/10.1109/TCYB.2014.2322602

    Article  Google Scholar 

  6. Pierezan J, Coelho LDS (2018) Coyote optimization algorithm: a new metaheuristic for global optimization problems. In: 2018 IEEE Congress on Evolutionary Computation (CEC) 2018, pp 1–8. https://doi.org/10.1109/CEC.2018.8477769

  7. Zhao W, Wang L, Zhang Z (2019) Supply-demand-based optimization: a novel economics-inspired algorithm for global optimization. IEEE Access 7:73182–73206. https://doi.org/10.1109/ACCESS.2019.2918753

    Article  Google Scholar 

  8. Abdullah JM, Ahmed T (2019) Fitness dependent optimizer: inspired by the bee swarming reproductive process. IEEE Access 7:43473–43486. https://doi.org/10.1109/ACCESS.2019.2907012

    Article  Google Scholar 

  9. Singh N, Houssein EH, Singh SB, Dhiman G (2022) HSSAHHO: a novel hybrid Salp swarm-Harris hawks optimization algorithm for complex engineering problems. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-022-03724-0

    Article  Google Scholar 

  10. Wu JY (2013) Solving unconstrained global optimization problems via hybrid swarm intelligence approaches. Math Probl Eng 2013:256180. https://doi.org/10.1155/2013/256180

    Article  MathSciNet  MATH  Google Scholar 

  11. Kuyu YÇ, Onieva E, Lopez-Garcia P (2022) A hybrid optimizer based on backtracking search and differential evolution for continuous optimization. J Exp Theort Artif Intell 34:355–385. https://doi.org/10.1080/0952813X.2021.1872109

    Article  Google Scholar 

  12. Yang J, Li WT, Shi XW, Xin L, Yu JF (2013) A hybrid ABC-DE algorithm and its application for time−modulated arrays pattern synthesis. EEE Trans Antennas Propag 61:5485–5495. https://doi.org/10.1109/TAP.2013.2279093

    Article  Google Scholar 

  13. Maaranen H, Miettinen K, Mäkelä MM (2004) Quasi-random initial population for genetic algorithms. Comput Math Appl 47:1885–1895. https://doi.org/10.1016/j.camwa.2003.07.011

    Article  MathSciNet  MATH  Google Scholar 

  14. Kimura S, Matsumura K (2005) Genetic algorithms using low-discrepancy sequences. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation 2005, pp 1341–1346. https://doi.org/10.1145/1068009.1068225

  15. Maaranen H, Miettinen K, Penttinen A (2007) On initial populations of a genetic algorithm for continuous optimization problems. J Glob Optim 37:405–436. https://doi.org/10.1007/s10898-006-9056-6

    Article  MathSciNet  MATH  Google Scholar 

  16. Poorghanad A, Sadr A, Kashanipour A (2008) Generating high quality pseudo random number using evolutionary methods. Int Conf Comput Intell Sec 2008:331–335. https://doi.org/10.1109/cis.2008.220

    Article  Google Scholar 

  17. Poles S, Fu Y, Rigoni E (2009) The effect of initial population sampling on the convergence of multi-objective genetic algorithms. In: Barichard V, Ehrgott M, Gandibleux X, T’Kindt V (eds) Multiobjective programming and goal programming, Lecture notes in economics and mathematical systems. Springer, Berlin

    Google Scholar 

  18. Gutiérrez AL, Lanza M, Barriuso I, Valle L, Domingo M, Pérez JR, Basterrechea J (2011) Comparison of different pso initialization techniques for high dimensional search space problems: a test with FSS and antenna arrays. In: Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), pp 965–969

  19. Omran MGH, Al-Sharhan S, Salman A, Clerc M (2013) Studying the effect of using low-discrepancy sequences to initialize population-based optimization algorithms. Comput Optim Appl 56:457–480. https://doi.org/10.1007/s10589-013-9559-2

    Article  MathSciNet  MATH  Google Scholar 

  20. Kazimipour B, Li X, Qin AK (2014) A review of population initialization techniques for evolutionary algorithms. In: 2014 IEEE Congress on Evolutionary Computation, pp 2585–2592. https://doi.org/10.1109/cec.2014.6900618

  21. Azad SK (2018) Seeding the initial population with feasible solutions in metaheuristic optimization of steel trusses. Eng Optim 50:89–105. https://doi.org/10.1080/0305215x.2017.1284833

    Article  MathSciNet  MATH  Google Scholar 

  22. Vlašić I, Ðurasević M, Jakobović D (2019) Improving genetic algorithm performance by population initialisation with dispatching rules. Comput Ind Eng 137:106030. https://doi.org/10.1016/j.cie.2019.106030

    Article  Google Scholar 

  23. Li Q, Liu SY, Yang XS (2020) Influence of initialization on the performance of metaheuristic optimizers. Appl Soft Comput 91:106193. https://doi.org/10.1016/j.asoc.2020.106193

    Article  Google Scholar 

  24. Morales-Castañeda B, Zaldívar D, Cuevas E, Rodríguez A, Navarro MA (2021) Population management in metaheuristic algorithms: Could less be more? Appl Soft Comput 107:107389. https://doi.org/10.1016/j.asoc.2021.107389

    Article  Google Scholar 

  25. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning, 1st edn. Addison Wesley, USA

    MATH  Google Scholar 

  26. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In Proceedings of the Sixth International Symposium on Micro Machine and Human Science MHS’95. pp. 39–43. https://doi.org/10.1109/MHS.1995.494215

  27. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  28. Civicioglu P (2013) Backtracking search optimization algorithm for numerical optimization problems. Appl Math Comput 219:8121–8144. https://doi.org/10.1016/j.amc.2013.02.017

    Article  MathSciNet  MATH  Google Scholar 

  29. Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214:108–132. https://doi.org/10.1016/j.amc.2009.03.090

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu X, Xu H (2018) Application on target localization based on salp swarm algorithm. In: 37th Chinese Control Conference (CCC). pp 4542–4545. https://doi.org/10.23919/chicc.2018.8482543

  31. Wright AH (1991) Genetic algorithms for real parameter optimization. Found Genetic Algorithms 1:205–218. https://doi.org/10.1016/b978-0-08-050684-5.50016-1

    Article  MathSciNet  Google Scholar 

  32. Marini F, Walczak B (2015) Particle swarm optimization (PSO) a tutorial. Chemom Intell Lab Syst 149:153–165. https://doi.org/10.1016/j.chemolab.2015.08.020

    Article  Google Scholar 

  33. Chen D, Zou F, Lu R, Li S (2019) Backtracking search optimization algorithm based on knowledge learning. Inf Sci 473:202–226. https://doi.org/10.1016/j.ins.2018.09.039

    Article  MathSciNet  Google Scholar 

  34. Kuyu YÇ, Erdem N, Vatansever F, Yılmaz G (2018) Comparison of the evolutionary algorithm’s performances on power flow analysis. Pamukkale Univ J Eng Sci 24:167–172. https://doi.org/10.5505/pajes.2016.89266

    Article  Google Scholar 

  35. Zhang J, Xiao M, Gao L, Pan Q (2018) Queuing search algorithm: a novel metaheuristic algorithm for solving engineering optimization problems. Appl Math Model 63:464–490. https://doi.org/10.1016/j.apm.2018.06.036

    Article  MathSciNet  MATH  Google Scholar 

  36. Liu Q, Li J, Wu L, Wang F, Xiao W (2020) A novel bat algorithm with double mutation operators and its application to low-velocity impact localization problem. Eng Appl Artif Intell 90:103505. https://doi.org/10.1016/j.engappai.2020.103505

    Article  Google Scholar 

  37. Kartashevsky V, Kozyreva N, Makarov I (2016) The numerical method for analysis of arbitrary type queuing systems application. In: Third International Scientific-Practical Conference Problems of Infocommunications Science and Technology (PIC S&T), pp 109–111. https://doi.org/10.1109/infocommst.2016.7905350

  38. Gunning P (2006) Stratification of skewed populations. PhD Thesis, Dublin City University

  39. Lishman RM (2004) An algorithm for the automatic resolution of the position, orientation and dipole moment of a magnetic dipole antenna buried in rock. PhD Thesis, University of the Witwatersrand

  40. Räisänen J (2012) Random graphs as model of peer-to-peer social networks. U.U.D.M. Project Report 2012:12, Uppsala University

  41. Bansal JC, Deep K, Veeramachaneni K, Osadciw L (2009) Information sharing strategy among particles in particle swarm optimization using Laplacian operator. In: 2009 IEEE Swarm Intelligence Symposium, pp 30–36. https://doi.org/10.1109/sis.2009.4937841

  42. Friederichs L, Sterr U, Dallmann D (2016) Vibration influence on hit probability during beaconless spatial acquisition. J Lightwave Technol 34:2500–2509. https://doi.org/10.1109/jlt.2016.2542918

    Article  Google Scholar 

  43. Harms RL (2012) Fitting and sampling of multi-compartment models to diffusion weighted MRI data. PhD Thesis, Maastricht University

  44. Luque G, Alba E (2012) Analyzing the behaviour of population-based algorithms using Rayleigh distribution. In: Coello CAC, Cutello V, Deb K, Forrest S, Nicosia G, Pavone M (eds) Parallel problem solving from nature–PPSN XII, PPSN 2012 Lecture Notes in Computer Science. Springer, Berlin

    Google Scholar 

  45. Kumar MBH, Balasubramaniyan S, Padmanaban S, Holm-Nielsen JB (2019) Wind energy potential assessment by Weibull parameter estimation using multiverse optimization method: a case study of Tirumala region in India. Energies 12:2158. https://doi.org/10.3390/en12112158

    Article  Google Scholar 

  46. Hassanzadeh Y, Ghazvinian M, Abdi A, Baharvand S, Jozaghi A (2020) Prediction of short and long-term droughts using artificial neural networks and hydro-meteorological variables. arXiv:2006.02581 [physics.ao-ph]. https://arxiv.org/abs/2006.02581

  47. Rodrigues LR, Medeiros IP, Kern CS (2015) Maintenance cost optimization for multiple components using a condition based method. In: 2015 Annual IEEE Systems Conference (SysCon) Proceedings, pp 164–169. https://doi.org/10.1109/syscon.2015.7116746

  48. Ourouss K, Naja N, Jamali A (2021) Defending against smart grayhole attack within MANETs: a reputation-based ant colony optimization approach for secure route discovery in DSR protocol. Wirel Pers Commun 116:207–226. https://doi.org/10.1007/s11277-020-07711-6

    Article  Google Scholar 

  49. Davani PP (2015) U-shaped assembly line balancing with grouping evolution strategy. Master Thesis, Eastern Mediterranean University.

  50. Padcharoen A, Kitkuan D, Kumam P, Rilwan J, Kumam W (2020) Accelerated alternating minimization algorithm for Poisson noisy image recovery. Inverse Probl Sci Eng 28:1031–1056. https://doi.org/10.1080/17415977.2019.1709454

    Article  MathSciNet  MATH  Google Scholar 

  51. Dilla E (2017) Software defined network paradigm coupled with a visualization of network functions and services in developing new network and service infrastructures. In: 2017 International Conference on Smart Technologies for Smart Nation (SmartTechCon), pp 660–664. https://doi.org/10.1109/SmartTechCon.2017.8358454

  52. Roiko A, Hänninen H, Vuorikari H (2012) Anisotropic distribution of non-metallic inclusions in a forged steel roll and its influence on fatigue limit. Int J Fatigue 41:158–167. https://doi.org/10.1016/j.ijfatigue.2011.12.023

    Article  Google Scholar 

  53. Ji C (2013) Analysis of temporally dependent extremes for the Gumbel distribution. Master Thesis, University of Calgary

  54. Jose JT (2014) Economic load dispatch including wind power using Bat Algorithm. Int Conf Adv Elect Eng (ICAEE). https://doi.org/10.1109/icaee.2014.6838546

    Article  Google Scholar 

  55. Lee CE, Kim SW, Park DH, Suh KD (2012) Target reliability of caisson sliding of vertical breakwater based on safety factors. Coastal Eng 60:167–173. https://doi.org/10.1016/j.coastaleng.2011.09.005

    Article  Google Scholar 

  56. Hollander M, Wolfe DA, Chicken E (2013) Nonparametric statistical methods. Wiley, New York

    MATH  Google Scholar 

  57. Celik M, Koylu F, Karaboga D (2016) CoABCMiner: an algorithm for cooperative rule classification system based on artificial bee colony. Int J Artif Intell Tools 25:1550028. https://doi.org/10.1142/S0218213015500281

    Article  Google Scholar 

  58. Kuyu YÇ, Vatansever F (2021) Advanced metaheuristic algorithms on solving multimodal functions: experimental analyses and performance evaluations. Arch Comput Methods Eng 28:4861–4873. https://doi.org/10.1007/s11831-021-09555-0

    Article  Google Scholar 

  59. MATLAB (2021) The MathWorks, Inc

  60. Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature−inspired algorithm for global optimization. Neural Comput Appl 27:495–513. https://doi.org/10.1007/s00521-015-1870-7

    Article  Google Scholar 

  61. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47. https://doi.org/10.1016/j.advengsoft.2017.01.004

    Article  Google Scholar 

  62. Liang JJ, Qu BY, Suganthan PN, Hernández-Díaz AG (2013) Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization. Zhengzhou University and Nanyang Technological University, Singapore

    Google Scholar 

  63. Das S, Suganthan PN (2010) Problem definitions and evaluation criteria for CEC 2011 competition on testing evolutionary algorithms on real world optimization problems. Jadavpur University and Nanyang Technological University, Singapore

    Google Scholar 

  64. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43:303–315. https://doi.org/10.1016/j.cad.2010.12.015

    Article  Google Scholar 

  65. Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics Bull 6:80–83. https://doi.org/10.2307/3001968

    Article  Google Scholar 

Download references

Acknowledgements

The first author thanks also the Karsan Company, R&D department for providing high performance computing resources.

Funding

This work is supported by the Scientific Research Projects Fund of Bursa Uludağ University, Contract grant number: FGA-2021–563.

Author information

Authors and Affiliations

Authors

Contributions

YÇK and FV contributed to the design and implementation of the research, to the analysis of the results and to the writing of the manuscript.

Corresponding author

Correspondence to Fahri Vatansever.

Ethics declarations

Competing interest

The authors declare no competing interest.

Ethical approval

Not applicable, because this article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Benchmark set-1 used in this study

 

Name

Equations

Dim

Range

Min

Unimodal

Sphere

\(F_{1} \left( x \right) = \mathop \sum \limits_{i = 1}^{n} x_{i}^{2}\)

\(50\)

\(\left[ { - 100, 100} \right]\)

\(0\)

Schwefel 2.22

\(F_{2} \left( x \right) = \mathop \sum \limits_{i = 1}^{n} \left| {x_{i} } \right| + \mathop \prod \limits_{i = 1}^{n} \left| {x_{i} } \right|\)

\(50\)

\(\left[ { - 10, 10} \right]\)

\(0\)

Schwefel 1.2

\(F_{3} \left( x \right) = \mathop \sum \limits_{i = 1}^{n} \left\{ {\mathop \sum \limits_{j = 1}^{i} x_{j} } \right\}^{2}\)

\(50\)

\(\left[ { - 100, 100} \right]\)

\(0\)

Schwefel 2.21

\(F_{4} \left( x \right) = \max_{i} \left\{ {\left| {x_{i} } \right|, 1 \le i \le n} \right\}\)

\(50\)

\(\left[ { - 100, 100} \right]\)

\(0\)

Rosenbrock

\(F_{5} \left( x \right) = \mathop \sum \limits_{i = 1}^{n - 1} \left[ {100\left( {x_{i + 1} - x_{i}^{2} } \right)^{2} + \left( {x_{i} - 1} \right)^{2} } \right]\)

\(50\)

\(\left[ { - 30, 30} \right]\)

\(0\)

Step

\(F_{6} \left( x \right) = \sum\limits_{i = 1}^{n} {\left\{ {\left[ {x_{i} + 0.5} \right]} \right\}}^{2}\)

\(50\)

\(\left[ { - 100, 100} \right]\)

\(0\)

Quartic

\(F_{7} \left( x \right) = \mathop \sum \limits_{i = 1}^{n} ix_{i}^{4} + {\text{random}}\left[ {0,1} \right)\)

\(50\)

\(\left[ { - 1.28, 1.28} \right]\)

\(0\)

Multimodal

Schwefel

\(F_{8} \left( x \right) = \mathop \sum \limits_{i = 1}^{n} - x_{i} {\text{sin}}\left( {\sqrt {\left| {x_{i} } \right|} } \right)\)

\(50\)

\(\left[ { - 500, + 500} \right]\)

 

Rastrigin

\(F_{9} \left( x \right) = \mathop \sum \limits_{i = 1}^{n} \left[ {x_{i}^{2} - 10\cos \left( {2\pi x_{i} } \right) + 10} \right]\)

\(50\)

\(\left[ { - 5.12, + 5.12} \right]\)

\(0\)

Ackley

\(F_{10} \left( x \right) = - 20 \exp \left( { - 0.2\sqrt {\frac{1}{n}\mathop \sum \limits_{i = 1}^{n} x_{i}^{2} } } \right) - \exp \left( {\frac{1}{n}\mathop \sum \limits_{i = 1}^{n} \cos \left( {2\pi x_{i} } \right)} \right) + 20 + e\)

\(50\)

\(\left[ { - 32, + 32} \right]\)

\(0\)

Griewank

\(F_{11} \left( x \right) = \frac{1}{4000}\mathop \sum \limits_{i = 1}^{n} x_{i}^{2} - \mathop \prod \limits_{i = 1}^{n} \cos \left( {\frac{{x_{i} }}{\sqrt i }} \right) + 1\)

\(50\)

\(\left[ { - 600, + 600} \right]\)

\(0\)

Penalized-1

\(F_{12} \left( x \right) = \frac{\pi }{n}\left\{ {10\sin \left( {\pi y_{1} } \right) + \mathop \sum \limits_{i = 1}^{n - 1} \left( {y_{i} - 1} \right)^{2} \left[ {1 + 10\sin^{2} \left( {\pi y_{i + 1} } \right)} \right] + \left( {y_{n} - 1} \right)^{2} } \right\} + \mathop \sum \limits_{i = 1}^{n} u\left( {x_{i} , 10, 100, 4} \right)\)

\(y_{i} = 1 + \frac{{x_{i} + 1}}{4} , u\left( {x_{i} , a, k, m} \right) = \left\{ {\begin{array}{*{20}c} {k(x_{i} - a)^{m} } & , & {x_{i} > a} \\ 0 & , & { - a < x_{i} < a} \\ {k( - x_{i} - a)^{m} } & , & {x_{i} < - a} \\ \end{array} } \right.\)

\(50\)

\(\left[ { - 50, + 50} \right]\)

\(0\)

Penalized-2

\(F_{13} \left( x \right) = 0.1\left\{ {\sin^{2} \left( {3\pi x_{1} } \right) + \mathop \sum \limits_{i = 1}^{n} \left( {x_{i} - 1} \right)^{2} \left[ {1 + \sin^{2} \left( {3\pi x_{i} + 1} \right)} \right] + \left( {x_{n} - 1} \right)^{2} \left[ {1 + \sin^{2} \left( {2\pi x_{n} } \right)} \right]} \right\} + \mathop \sum \limits_{i = 1}^{n} u\left( {x_{i} , 5, 100, 4} \right)\)

\(50\)

\(\left[ { - 50, + 50} \right]\)

\(0\)

Appendix 2: Benchmark set-2 used in this study (CEC2013)

 

Name

Equation

\({\varvec{F}}_{{\varvec{i}}}^{\user2{*}}\)

Unimodal

Sphere

\(F_{1} \left( x \right) = \mathop \sum \limits_{i = 1}^{D} z_{i}^{2} + F_{1}^{*} ,\;z = x - o\)

 − 1400

Rotated High Conditioned Elliptic

\(F_{2} \left( x \right) = \mathop \sum \limits_{i = 1}^{D} \left( {10^{6} } \right)^{{\frac{i - 1}{{D - 1}}}} z_{i}^{2} + F_{2}^{*} ,\;z = T_{osz} \left\{ {M_{1} \left( {x - o} \right)} \right\}\)

 − 1300

Rotated bent cigar

\(F_{3} \left( x \right) = z_{1}^{2} + 10^{6} \mathop \sum \limits_{i = 2}^{D} z_{i}^{2} + F_{3}^{*} ,\;z = M_{2} T_{asy}^{0.5} \left\{ {M_{1} \left( {x - o} \right)} \right\}\)

 − 1200

Rotated discus

\(F_{4} \left( x \right) = 10^{6} z_{1}^{2} + \mathop \sum \limits_{i = 2}^{D} z_{i}^{2} + F_{4}^{*} ,\;z = T_{{{\text{osz}}}} \left\{ {M_{1} \left( {x - o} \right)} \right\}\)

 − 1100

Different powers

\(F_{5} \left( x \right) = \sqrt {\mathop \sum \limits_{i = 1}^{D} \left| {z_{i} } \right|^{{2 + 4\frac{i - 1}{{D - 1}}}} } + F_{5}^{*} ,\;z = x - o\)

 − 1000

Multimodal

Rotated Rosenbrock's

\(\begin{aligned} F_{6} \left( x \right) = & \;\mathop \sum \limits_{i = 1}^{D - 1} \left\{ {100\left( {z_{i}^{2} - z_{i - 1}^{2} } \right)^{2} + \left( {z_{i} - 1} \right)^{2} } \right\} + F_{6}^{*} , \\ z = & \;M_{1} \left( {\frac{{2.048\left( {x - o} \right)}}{100}} \right) + 1 \\ \end{aligned}\)

 − 900

Rotated Schaffers F7

\(\begin{aligned} F_{7} \left( x \right) = & \;\left\{ {\frac{1}{{D - 1}}\mathop \sum \limits_{{i = 1}}^{{D - 1}} \left[ {\sqrt {z_{i} } + \sqrt {z_{i} } \sin ^{2} \left( {50\sqrt[5]{{z_{i} }}} \right)} \right]} \right\}^{2} \\ & \; + F_{7}^{*} ,\;\begin{array}{*{20}c} {z_{i} = \sqrt {y_{i}^{2} + y_{{i + 1}}^{2} } ~~,~~i = 1, \ldots ,D} \\ {y = \Lambda ^{{10}} M_{2} T_{{{\text{asy}}}}^{{0.5}} \left\{ {M_{1} \left( {x - o} \right)} \right\}} \\ \end{array} \\ \end{aligned}\)

 − 800

Rotated Ackley's

\(\begin{aligned} F_{8} \left( x \right) = & \; - 20e^{{ - 0.2\sqrt {\frac{1}{D}\mathop \sum \limits_{i = 1}^{D} z_{i}^{2} } }} - e^{{\frac{1}{D}\mathop \sum \limits_{i = 1}^{D} \cos \left( {2\pi z_{i} } \right)}} + 20 + e + F_{8}^{*} , \\ z = & \;\Lambda^{10} M_{2} T_{asy}^{0.5} \left\{ {M_{1} \left( {x - o} \right)} \right\} \\ \end{aligned}\)

 − 700

Rotated Weierstrass

\(\begin{aligned} F_{9} \left( x \right) = & \;\mathop \sum \limits_{i = 1}^{D} \left\{ {\mathop \sum \limits_{k = 0}^{{k_{\max } }} \left[ {a^{k} \cos \left( {2\pi b^{k} \left( {z_{i} + 0.5} \right)} \right)} \right]} \right\} \\ & \; - D\mathop \sum \limits_{k = 0}^{{k_{\max } }} \left[ {a^{k} \cos \left( {\pi b^{k} } \right)} \right] + F_{9}^{*} ,\;\frac{{a = 0.5 , b = 3 , k_{\max } = 20}}{{z = \Lambda^{10} M_{2} T_{asy}^{0.5} \left\{ {M_{1} \frac{{0.5\left( {x - o} \right)}}{100}} \right\}}} \\ \end{aligned}\)

 − 600

Rotated Griewank’s

\(F_{10} \left( x \right) = \mathop \sum \limits_{i = 1}^{D} \frac{{z_{i}^{2} }}{4000} - \mathop \prod \limits_{i = 1}^{D} \cos \left( {\frac{{z_{i} }}{\sqrt i }} \right) + 1 + F_{10}^{*} ,\;z = \Lambda^{100} M_{1} \frac{{600\left( {x - o} \right)}}{100}\)

 − 500

Rastrigin’s

\(\begin{aligned} F_{11} \left( x \right) = & \;\mathop \sum \limits_{i = 1}^{D} \left\{ {z_{i}^{2} - 10\cos \left( {2\pi z_{i} } \right) + 10} \right\} + F_{11}^{*} , \\ z = & \;\Lambda^{10} T_{{{\text{asy}}}}^{0.2} \left\{ {T_{{{\text{osz}}}} \left( {\frac{{5.12\left( {x - o} \right)}}{100}} \right)} \right\} \\ \end{aligned}\)

 − 4000

Rotated Rastrigin’s

\(\begin{aligned} F_{12} \left( x \right) = & \;\mathop \sum \limits_{i = 1}^{D} \left\{ {z_{i}^{2} - 10\cos \left( {2\pi z_{i} } \right) + 10} \right\} + F_{12}^{*} , \\ z = & \;M_{1} \Lambda^{10} M_{2} T_{{{\text{asy}}}}^{0.2} \left\{ {T_{{{\text{osz}}}} \left( {M_{1} \frac{{5.12\left( {x - o} \right)}}{100}} \right)} \right\} \\ \end{aligned}\)

 − 300

Non-Continuous Rotated Rastrigin's

\(F_{13} \left( x \right) = \mathop \sum \limits_{i = 1}^{D} \left\{ {z_{i}^{2} - 10\cos \left( {2\pi z_{i} } \right) + 10} \right\} + F_{13}^{*}\)

\(\begin{aligned} \hat{x} = & \;M_{1} \frac{{5.12\left( {x - o} \right)}}{100} \\ y_{i} = & \;\left\{ {\begin{array}{*{20}l} {\hat{x}_{i} \quad } \hfill & {\left| {\hat{x}_{i} } \right| \le 0.5} \hfill \\ {{\text{round}}\left( {2\hat{x}_{i} } \right)/2\quad } \hfill & {\left| {\hat{x}_{i} } \right| > 0.5} \hfill \\ \end{array} } \right., \\ z = & \;M_{1} \Lambda^{10} M_{2} T_{{{\text{asy}}}}^{0.2} \left\{ {T_{{{\text{osz}}}} \left( y \right)} \right\} \\ \end{aligned}\)

 − 200

Schwefel's

\(\begin{aligned} F_{14} \left( z \right) = & \;418.9829D - \mathop \sum \limits_{i = 1}^{D} g\left( {z_{i} } \right) + F_{14}^{*} , \\ z = & \;{\Lambda }^{10} \left( {\frac{{1000\left( {x - o} \right)}}{100}} \right) + 420.9687462275036 \\ \end{aligned}\)

\(g\left( {z_{i} } \right) = \left\{ {\begin{array}{*{20}l} {\left\{ {\bmod \left( {\left| {z_{i} } \right|,500} \right) - 500} \right\}\sin \left( {\sqrt {\left| {\bmod \left( {\left| {z_{i} } \right|,500} \right) - 500} \right|} } \right) - \frac{{\left( {z_{i} + 500} \right)^{2} }}{10000D},\quad } \hfill & {z_{i} < - 500} \hfill \\ {z_{i} \sin \left( {\sqrt {\left| {z_{i} } \right|} } \right),\quad } \hfill & {\left| {z_{i} } \right| \le 500} \hfill \\ {\left\{ {500 - \bmod \left( {\left| {z_{i} } \right|,500} \right)} \right\}\sin \left( {\sqrt {\left| {500 - \bmod \left( {\left| {z_{i} } \right|,500} \right)} \right|} } \right) - \frac{{\left( {z_{i} - 500} \right)^{2} }}{10000D},\quad } \hfill & {\left| {z_{i} } \right| > 500} \hfill \\ \end{array} } \right.\)

 − 100

Rotated Schwefel's

\(\begin{aligned} F_{15} \left( z \right) = & \;418.9829D - \mathop \sum \limits_{i = 1}^{D} g\left( {z_{i} } \right) + F_{15}^{*} , \\ z = & \;\Lambda^{10} M_{1} \left( {\frac{{1000\left( {x - o} \right)}}{100}} \right) + 420.9687462275036 \\ \end{aligned}\)

\(g\left( {z_{i} } \right) = \left\{ {\begin{array}{*{20}c} {\left\{ {\bmod \left( {\left| {z_{i} } \right|,500} \right) - 500} \right\}\sin \left( {\sqrt {\left| {\bmod \left( {\left| {z_{i} } \right|,500} \right) - 500} \right|} } \right) + \frac{{\left( {z_{i} + 500} \right)^{2} }}{10000D}} & , & {z_{i} < - 500} \\ {z_{i} \sin \left( {\sqrt {\left| {z_{i} } \right|} } \right)} & , & {\left| {z_{i} } \right| \le 500} \\ {\left\{ {500 - \bmod \left( {\left| {z_{i} } \right|,500} \right)} \right\}\sin \left( {\sqrt {\left| {500 - \bmod \left( {\left| {z_{i} } \right|,500} \right)} \right|} } \right) + \frac{{\left( {z_{i} + 500} \right)^{2} }}{10000D}} & , & {\left| {z_{i} } \right| > 500} \\ \end{array} } \right.\)

100

Rotated Katsuura

\(\begin{aligned} F_{16} \left( x \right) = & \;\frac{10}{{D^{2} }}\mathop \prod \limits_{i = 1}^{D} \left\{ {1 + i\mathop \sum \limits_{j = 1}^{32} \frac{{\left| {2^{j} z_{i} - {\text{round}}\left( {2^{j} z_{i} } \right)} \right|}}{{2^{j} }}} \right\}^{{\frac{10}{{D^{1.2} }}}} - \frac{10}{{D^{2} }} + F_{16}^{*} , \\ z = & \;M_{2} \Lambda^{100} \left( {M_{1} \frac{{5\left( {x - o} \right)}}{100}} \right) \\ \end{aligned}\)

200

Lunacek Bi_Rastrigin

\(\begin{aligned} F_{17} \left( x \right) = & \;\min \left\{ {\mathop \sum \limits_{i = 1}^{D} \left( {\hat{x}_{i} - \mu_{0} } \right)^{2} ,dD + s\mathop \sum \limits_{i = 1}^{D} \left( {\hat{x}_{i} - \mu_{1} } \right)^{2} } \right\} \\ & \; + 10\left\{ {D - \mathop \sum \limits_{i = 1}^{D} \cos \left( {2\pi \hat{z}_{i} } \right)} \right\} + F_{17}^{*} \\ \end{aligned}\)

\(\begin{aligned} \mu_{0} = & \;2.5,\;s = 1 - \frac{1}{{2\sqrt {D + 20} - 8.2}} \\ d = & \;1,\;\mu_{1} = - \sqrt {\frac{{\mu_{0}^{2} - d}}{s}} \\ \end{aligned}\)

\(y = \frac{{10\left( {x - o} \right)}}{100},\;\hat{x}_{i} = 2sign\left( {x_{i}^{*} } \right)y_{i} + \mu_{0} ,\;z = \Lambda^{100} \left( {\hat{x} - \mu_{0} } \right)\)

300

Rotated Lunacek Bi_Rastrigin

\(\begin{aligned} F_{18} \left( x \right) = & \;\min \left\{ {\mathop \sum \limits_{i = 1}^{D} \left( {\hat{x}_{i} - \mu_{0} } \right)^{2} ,{\text{d}}D + s\mathop \sum \limits_{i = 1}^{D} \left( {\hat{x}_{i} - \mu_{1} } \right)^{2} } \right\} \\ & \; + 10\left\{ {D - \mathop \sum \limits_{i = 1}^{D} \cos \left( {2\pi \hat{z}_{i} } \right)} \right\} + F_{18}^{*} \\ \end{aligned}\)

\(\mu_{0} = 2.5,\;s = 1 - \frac{1}{{2\sqrt {D + 20} - 8.2}},\;d = 1,\;\mu_{1} = - \sqrt {\frac{{\mu_{0}^{2} - d}}{s}}\)

\(y = \frac{{10\left( {x - o} \right)}}{100},\;\hat{x}_{i} = 2\;{\text{sign}}\;\left( {y_{i}^{*} } \right)y_{i} + \mu_{0} ,\;z = M_{2} \Lambda^{100} \left( {M_{1} \left( {\hat{x} - \mu_{0} } \right)} \right)\)

400

Rotated Expanded Griewank’s plus Rosenbrock's

\(F_{19} \left( x \right) = g_{1} \left\{ {g_{2} \left( {z_{1} ,z_{2} } \right)} \right\} + g_{1} \left\{ {g_{2} \left( {z_{2} ,z_{3} } \right)} \right\} + \ldots + g_{1} \left\{ {g_{2} \left( {z_{D - 1} ,z_{D} } \right)} \right\} + g_{1} \left\{ {g_{2} \left( {z_{D} ,z_{1} } \right)} \right\} + F_{19}^{*}\)

\(\begin{array}{*{20}c} {g_{1} \left( x \right) = \mathop \sum \limits_{i = 1}^{D} \frac{{x_{i}^{2} }}{4000} - \mathop \prod \limits_{i = 1}^{D} \cos \left( {\frac{{x_{i} }}{\sqrt i }} \right) + 1} & , & {g_{2} \left( x \right) = \mathop \sum \limits_{i = 1}^{D - 1} \left\{ {100\left( {x_{i}^{2} - x_{i + 1} } \right)^{2} + \left( {x_{i} } \right)^{2} } \right\}} \\ \end{array}\)

\(z = M_{1} \left( {\frac{{5\left( {x - o} \right)}}{100}} \right) + 1\)

500

Rotated Expanded Schaffers F6

\(F_{20} \left( x \right) = g\left( {z_{1} ,z_{2} } \right) + g\left( {z_{2} ,z_{3} } \right) + \ldots + g\left( {z_{D - 1} ,z_{D} } \right) + g\left( {z_{D} ,z_{1} } \right) + F_{19}^{*}\)

\(g\left( {x,y} \right) = 0.5 + \frac{{\sin^{2} \left( {\sqrt {x^{2} + y^{2} } } \right) - 0.5}}{{\left\{ {1 + 0.001\left( {x^{2} + y^{2} } \right)} \right\}^{2} }},\;z = M_{2} T_{asy}^{0.5} \left( {M_{1} \left( {x - o} \right)} \right)\)

600

Descriptions

 

\(D\): Dimension, Minimization problem: \(\min \left\{ {F\left( x \right)} \right\}\), \(x = \left[ {x_{1} ,x_{2} , \ldots ,x_{D} } \right]^{T}\), \(i = 1,2, \ldots ,D\), \(F_{i}^{*} = F_{i} \left( {x^{*} } \right)\)

\(o = \left[ {o_{1} ,o_{2} , \ldots ,o_{D} } \right]^{T}\): The shifted global optimum, \(M_{1} ,M_{2} , \ldots ,M_{10}\): Orthogonal (rotation) matrix

\({\Lambda }^{\alpha }\): Diagonal matrix in \(D\) dimensions with the \(i\) th diagonal element as \(\lambda_{ii} = \alpha^{{\frac{i - 1}{{2\left( {D - 1} \right)}}}}\), \(T_{{{\text{asy}}}}^{\beta }\): \(\begin{array}{*{20}c} {x_{i} > 0 \Rightarrow x_{i} = x_{i}^{{1 + \beta \frac{i - 1}{{D - 1}}\sqrt {x_{i} } }} } \\ \end{array}\)

\(T_{osz}\):\(x_{i} = {\text{sign}}\left( {x_{i} } \right)e^{{\left\{ {\hat{x}_{i} + 0.049\left[ {\sin \left( {c_{1} \hat{x}_{i} } \right) + \sin \left( {c_{2} \hat{x}_{i} } \right)} \right]} \right\}}} ,\;\left\{ {\begin{array}{*{20}l} {{\text{sign}}\left( {x_{i} } \right) = \left\{ {\begin{array}{*{20}l} { - 1} \hfill & {x_{i} < 0} \hfill \\ 0 \hfill & {x_{i} = 0} \hfill \\ 1 \hfill & {x_{i} > 0} \hfill \\ \end{array} ,\quad } \right.} \hfill & {\hat{x}_{i} = \left\{ {\begin{array}{*{20}l} {\log \left( {\left| {x_{i} } \right|} \right)} \hfill & {x_{i} \ne 0} \hfill \\ 0 \hfill & {{\text{otherwise}}} \hfill \\ \end{array} } \right.} \hfill \\ {c_{1} = \left\{ {\begin{array}{*{20}l} {10} \hfill & {x_{i} > 0} \hfill \\ {5.5} \hfill & {{\text{otherwise}}} \hfill \\ \end{array} } \right.,\quad } \hfill & {c_{2} = \left\{ {\begin{array}{*{20}l} {7.9} \hfill & {x_{i} > 0} \hfill \\ {3.1} \hfill & {{\text{otherwise}}} \hfill \\ \end{array} } \right.} \hfill \\ \end{array} } \right.\)

Appendix 3: Real-world problems used in this study

Problem

Objective function

Constraints/Related equations

Parameter estimation of FM sound waves

\(F\left( {\vec{X}} \right) = \mathop \sum \limits_{t = 0}^{100} \left\{ {y\left( t \right) - y_{0} \left( t \right)} \right\}^{2}\)

\(y\left( t \right) = a_{1} \sin \left\{ {\omega_{1} t\theta + a_{2} \sin \left( {\omega_{2} t\theta + a_{3} \sin \left( {\omega_{3} t\theta } \right)} \right)} \right\}\)

\(y_{0} \left( t \right) = \sin \left\{ {5t\theta - 1.5\sin \left( {4.8t\theta + 2\sin \left( {4.9t\theta } \right)} \right)} \right\}\)

Welded beam design problem

\(F\left( x \right) = 1.10471x_{1}^{2} x_{2} + 0.04811x_{3} x_{4} \left( {x_{2} + 14} \right)\)

\(g\left( 1 \right) = \tau \left( x \right) - \tau_{\max } \le 0\)

\(g\left( 2 \right) = \sigma \left( x \right) - \sigma_{\max } \le 0\)

\(g\left( 3 \right) = x_{1} - x_{4} \le 0\)

\(g\left( 4 \right) = 1.10471x_{1}^{2} + 0.04811x_{3} x_{4} \left( {x_{2} + 14} \right) - 5 \le 0\) \(g\left( 5 \right) = 0.125 - x_{1} \le 0\)

\(g\left( 6 \right) = \delta \left( x \right) - \delta_{\max } \le 0\)

\(g\left( 7 \right) = P - Pc\left( x \right) \le 0\)

Dynamic economic load dispatch problems

\(\mathop \sum \limits_{t = 1}^{n} \mathop \sum \limits_{i = 1}^{N} F_{i} \left( {P_{it} } \right) + c_{1} \left\{ {\mathop \sum \limits_{t = 1}^{n} \mathop \sum \limits_{i = 1}^{N} P_{it} - P_{Dt} } \right\}^{2} + c_{2} \left\{ {\mathop \sum \limits_{t = 1}^{n} \mathop \sum \limits_{i = 1}^{N} P_{it} - P_{r\lim } } \right\}^{2}\)

\(P_{i}^{\min } \le P_{it} \le P_{i}^{\max }\)

\(\max \left( {P_{i}^{\min } ,UR_{i} - P_{i} } \right) \le P_{i} \le \min \left( {P_{i}^{\max } ,P_{i}^{t - 1} - DR_{i} } \right)\)

Static economic load dispatch problems

Objective functions without valve point effect

\(F_{i} \left( {P_{i} } \right) = a_{i} P_{i}^{2} + b_{i} P_{i} + c_{i}\)

Objective functions with valve point effect

\(F_{i} \left( {P_{i} } \right) = a_{i} P_{i}^{2} + b_{i} P_{i} + c_{i} + \left| {e_{i} \sin \left\{ {f_{i} \left( {P_{i}^{\min } - P_{i} } \right)} \right\}} \right|\)

\(P_{i}^{\min } \le P_{i} \le P_{i}^{\max }\)

\(P_{i} \le \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{P}^{pz} \;{\text{and}}\;P_{i} \ge \hat{P}^{pz}\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuyu, Y.Ç., Vatansever, F. A conceptual investigation of the effect of random numbers over the performance of metaheuristic algorithms. J Supercomput 79, 13971–14038 (2023). https://doi.org/10.1007/s11227-023-05111-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-023-05111-8

Keywords

Navigation