Skip to main content
Log in

Elucidating the mechanistic sensing capability of novel tetragonal graphene quantum dot towards tobacco alkaloids: a DFT study

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Smoking is the g`reatest preventable cause of mortality all over the world as it causes lung cancer, vascular disease, peptic ulcers, coronary heart disease, stroke and harm to the developing fetal brain, and numerous respiratory issues, such as chronic bronchitis, emphysema, pulmonary hypertension, obstruction of tiny airways, and chronic obstructive pulmonary diseases. These diseases are mainly caused by smoking of tobacco products, including pipe tobacco, snuff, cigars, and cigarettes. To overcome the dangerous and adverse effects of tobacco alkaloids, the utilization of novel class of quantum dots, the graphene quantum dot (GQD) has not yet been thoroughly investigated. To fill this gap, the mechanistic sensing capability of the tetragonal graphene quantum dot towards tobacco alkaloids including anabasine (Anab), anatabine (Anat), myosmine (Myos), nitrosoanabasine (NAB), nitrosoanatabine (NAT), and nornicotine (NOR) has been investigated by employing first-principles DFT and TD-DFT computations. The computational tools have been utilized to investigate the interaction energies, the energy gap (FMO analysis), non-covalent interactions (NCI analysis), transfer of charges (QNBO), and the nature and strength of intermolecular interactions (QTAIM analysis). The NOR@T-GQD complex has the greatest interaction energy (− 20.1051 kcal/mol) among all the studied complexes. Also, the complex NOR@T-GQD has the lowest energy gap (1.072 eV) and chemical hardness (0.536 eV) which indicates the highest conductivity (2.486 × 109), shortest recovery time (3.005 × 10−16), and highest sensing response (2.326). UV–Vis analysis explored the maximum absorbance wavelength, excitation energy, and oscillator strength for the studied system and the thermodynamic analysis explored the spontaneity of the interaction process of the studied complexes. So, all the investigation parameters have proved that the tetragonal graphene quantum dot-based sensor is an influential sensing material towards all studied tobacco alkaloids especially for the tobacco alkaloid nornicotine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data are available within the article and supporting information.

References

  1. Ho JY, Fenelon A (2015) The contribution of smoking to educational gradients in U.S. life expectancy. J Health Soc Behav 56(3):307–322. https://doi.org/10.1177/0022146515592731

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ng M, Freeman MK, Fleming TD, Robinson M, Dwyer-Lindgren L, Thomson B, Wollum A, Sanman E, Wulf S, Lopez AD, Murray CJL, Gakidou E (2014) Smoking prevalence and cigarette consumption in 187 countries, 1980–2012. JAMA 311(2):183–192. https://doi.org/10.1001/jama.2013.284692

    Article  CAS  PubMed  Google Scholar 

  3. Frieden R, Jaffe W (2012) Current cigarette smoking among adults–United States (2011) Centers for Disease Control and Prevention. Morb Mortal Wkly Rep 61(2012):44

  4. Pesch B, Kendzia B, Gustavsson P, Jöckel K-H, Johnen G, Pohlabeln H, Olsson A, Ahrens W, Gross IM, Brüske I, Wichmann H-E, Merletti F, Richiardi L, Simonato L, Fortes C, Siemiatycki J, Parent M-E, Consonni D, Landi MT, Caporaso N, Zaridze D, Cassidy A, Szeszenia-Dabrowska N, Rudnai P, Lissowska J, Stücker I, Fabianova E, Dumitru RS, Bencko V, Foretova L, Janout V, Rudin CM, Brennan P, Boffetta P, Straif K, Brüning T (2012) Cigarette smoking and lung cancer—relative risk estimates for the major histological types from a pooled analysis of case–control studies. Int J Cancer 131(5):1210–1219. https://doi.org/10.1002/ijc.27339

    Article  CAS  PubMed  Google Scholar 

  5. Byler K, Makena P, Prasad G, Baudry J (2021) Computational prediction of metabolites of tobacco-specific nitrosamines by CYP2A13

  6. Liu X, Joza P, Rickert B (2017) Analysis of nicotine and nicotine-related compounds in electronic cigarette liquids and aerosols by liquid chromatography-tandem mass spectrometry. Contributions to Tobacco & Nicotine Research 27(7):154–167

    Google Scholar 

  7. Kleinsasser NH, Wallner BC, Harréus UA, Zwickenpflug W, Richter E (2003) Genotoxic effects of myosmine in human lymphocytes and upper aerodigestive tract epithelial cells. Toxicology 192(2):171–177. https://doi.org/10.1016/S0300-483X(03)00296-8

    Article  CAS  PubMed  Google Scholar 

  8. Karthika A, Karuppasamy P, Selvarajan S, Suganthi A, Rajarajan M (2019) Electrochemical sensing of nicotine using CuWO4 decorated reduced graphene oxide immobilized glassy carbon electrode. Ultrason Sonochem 55:196–206. https://doi.org/10.1016/j.ultsonch.2019.01.038

    Article  CAS  PubMed  Google Scholar 

  9. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191. https://doi.org/10.1038/nmat1849

    Article  CAS  PubMed  Google Scholar 

  10. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6(9):652–655. https://doi.org/10.1038/nmat1967

    Article  CAS  PubMed  Google Scholar 

  11. Robinson JT, Perkins FK, Snow ES, Wei Z, Sheehan PE (2008) Reduced graphene oxide molecular sensors. Nano Lett 8(10):3137–3140. https://doi.org/10.1021/nl8013007

    Article  CAS  PubMed  Google Scholar 

  12. Fowler JD, Allen MJ, Tung VC, Yang Y, Kaner RB, Weiller BH (2009) Practical chemical sensors from chemically derived graphene. ACS Nano 3(2):301–306. https://doi.org/10.1021/nn800593m

    Article  CAS  PubMed  Google Scholar 

  13. Lu G, Ocola LE, Chen J (2009) Gas detection using low-temperature reduced graphene oxide sheets. Appl Phys Lett 94(8):083111. https://doi.org/10.1063/1.3086896

    Article  CAS  Google Scholar 

  14. Li W, Geng X, Guo Y, Rong J, Gong Y, Wu L, Zhang X, Li P, Xu J, Cheng G, Sun M, Liu L (2011) Reduced graphene oxide electrically contacted graphene sensor for highly sensitive nitric oxide detection. ACS Nano 5(9):6955–6961. https://doi.org/10.1021/nn201433r

    Article  CAS  PubMed  Google Scholar 

  15. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287(5453):622–625. https://doi.org/10.1126/science.287.5453.622

    Article  CAS  PubMed  Google Scholar 

  16. Capone S, Forleo A, Francioso L, Rella R, Siciliano P, Spadavecchia J, Presicce D, Taurino A (2003) Solid state gas sensors: state of the art and future activities. J Optoelectron Adv Mater 5(5):1335–1348

    CAS  Google Scholar 

  17. Xuan Y, Wu YQ, Shen T, Qi M, Capano MA, Cooper JA, Ye PD (2008) Atomic-layer-deposited nanostructures for graphene-based nanoelectronics. Appl Phys Lett 92(1):013101. https://doi.org/10.1063/1.2828338

    Article  CAS  Google Scholar 

  18. Robinson JA, Snow ES, Bǎdescu ŞC, Reinecke TL, Perkins FK (2006) Role of defects in single-walled carbon nanotube chemical sensors. Nano Lett 6(8):1747–1751. https://doi.org/10.1021/nl0612289

    Article  CAS  PubMed  Google Scholar 

  19. Enyashin AN, Ivanovskii AL (2011) Graphene allotropes physica status solidi (b) 248(8):1879–1883. https://doi.org/10.1002/pssb.201046583

    Article  CAS  Google Scholar 

  20. Liu Y, Wang G, Huang Q, Guo L, Chen X (2012) Structural and electronic properties of $T$ graphene: a two-dimensional carbon allotrope with tetrarings. Phys Rev Lett 108(22):225505. https://doi.org/10.1103/PhysRevLett.108.225505

    Article  CAS  PubMed  Google Scholar 

  21. Ye X-J, Liu C-S, Zhong W, Zeng Z, Du Y-W (2014) Metalized T graphene: a reversible hydrogen storage material at room temperature. J Appl Phys 116(11):114304

    Article  Google Scholar 

  22. Bandyopadhyay A, Paria S, Jana D (2018) Tetragonal graphene nanodot as carbon monoxide gas sensor and current rectification device. J Phys Chem Solids 123:172–182

    Article  CAS  Google Scholar 

  23. Chowdhury S, Majumdar A, Jana D (2017) Search for magnetism in transition metal atoms doped tetragonal graphene: a DFT approach. J Magn Magn Mater 441:523–530

    Article  CAS  Google Scholar 

  24. Bandyopadhyay A, Nandy A, Chakrabarti A, Jana D (2017) Optical properties and magnetic flux-induced electronic band tuning of a T-graphene sheet and nanoribbon. Phys Chem Chem Phys 19(32):21584–21594

    Article  CAS  PubMed  Google Scholar 

  25. Kim S, Hwang SW, Kim M-K, Shin DY, Shin DH, Kim CO, Yang SB, Park JH, Hwang E, Choi S-H, Ko G, Sim S, Sone C, Choi HJ, Bae S, Hong BH (2012) Anomalous behaviors of visible luminescence from graphene quantum dots: interplay between size and shape. ACS Nano 6(9):8203–8208. https://doi.org/10.1021/nn302878r

    Article  CAS  PubMed  Google Scholar 

  26. Chakraborti G, Bandyopadhyay A, Jana D (2018) Effect and characterization of stone–wales defects on graphene quantum dot: a first-principles study. Condensed Matter 3(4):50

    Article  CAS  Google Scholar 

  27. Ashraf A, Carter-Fenk K, Herbert JM, Farooqi BA, Farooq U, Ayub K (2019) Interaction of graphene quantum dots with oligothiophene: a comprehensive theoretical study. The Journal of Physical Chemistry C 123(49):29556–29570. https://doi.org/10.1021/acs.jpcc.9b08090

    Article  CAS  Google Scholar 

  28. Shao S, Chen X, Chen Y, Zhang L, Kim HW, Kim SS (2020) ZnO nanosheets modified with graphene quantum dots and SnO2 quantum nanoparticles for room-temperature H2S sensing. ACS Applied Nano Materials 3(6):5220–5230. https://doi.org/10.1021/acsanm.0c00642

    Article  CAS  Google Scholar 

  29. Chen Z-L, Wang D, Wang X-Y, Yang J-H (2021) Enhanced formaldehyde sensitivity of two-dimensional mesoporous SnO 2 by nitrogen-doped graphene quantum dots. Rare Met 40:1561–1570

    Article  CAS  Google Scholar 

  30. Ganji MD, Jameh-Bozorgi S, Rezvani M (2016) A comparative study of structural and electronic properties of formaldehyde molecule on monolayer honeycomb structures based on vdW-DF prospective. Appl Surf Sci 384:175–181. https://doi.org/10.1016/j.apsusc.2016.05.011

    Article  CAS  Google Scholar 

  31. Ganji MD, Rezvani M (2013) Boron nitride nanotube based nanosensor for acetone adsorption: a DFT simulation. J Mol Model 19(3):1259–1265. https://doi.org/10.1007/s00894-012-1668-9

    Article  CAS  PubMed  Google Scholar 

  32. Banibairami T, Jamehbozorgi S, Ghiasi R, Rezvani M (2020) Sensing behavior of hexagonal-aluminum nitride to phosgene molecule based on Van der Waals–density functional theory and molecular dynamic simulation. Russ J Phys Chem A 94(3):581–589. https://doi.org/10.1134/S0036024420030048

    Article  CAS  Google Scholar 

  33. Ganji MD, Seyed-aghaei N, Taghavi MM, Rezvani M, Kazempour F (2011) Ammonia adsorption on SiC nanotubes: a density functional theory investigation. Fullerenes, Nanotubes, Carbon Nanostruct 19(4):289–299. https://doi.org/10.1080/15363831003721740

    Article  CAS  Google Scholar 

  34. Dennington RD, Keith TA, Millam JM (2008) GaussView 5.0. 8. Gaussian Inc

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria G, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson G, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev V, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VJ, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski DJ, Fox D (2009) 0109, Revision D. 01, Gaussian. Inc., Wallingford, CT

  36. Azofra LM, Alkorta I, Scheiner S (2014) Noncovalent interactions in dimers and trimers of SO 3 and CO, 9th Congress on Electronic Structure: Principles and Applications (ESPA. Springer 2016:159–166

    Google Scholar 

  37. Rad AS, Ayub K (2017) Adsorption of thiophene on the surfaces of X12Y12 (X=Al, B, and Y=N, P) nanoclusters; a DFT study. J Mol Liq 238:303–309. https://doi.org/10.1016/j.molliq.2017.05.020

    Article  CAS  Google Scholar 

  38. Mohammadi MD, Abdullah HY, Kalamse V, Chaudhari A (2021) Adsorption of alkali and alkaline earth ions on nanocages using density functional theory. Comput Theor Chem 1204:113391

    Article  CAS  Google Scholar 

  39. Javed M, Khan MU, Hussain R, Ahmed S, Ahamad T (2023) Deciphering the electrochemical sensing capability of novel Ga 12 As 12 nanocluster towards chemical warfare phosgene gas: insights from DFT. RSC Adv 13(41):28885–28903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bassey VM, Gber TE, Ikot IJ, Syed A, Ogunwale GJ, Edim MM, Orosun MM, Louis H (2024) Effect of d-block metals (M= Ti, Zr, Hf) decorated fullerenes M@ C60 as sensor nanostructured materials for volatile organic compounds (VOCs): approach from computational study. Inorg Chem Commun 160:111892

    Article  CAS  Google Scholar 

  41. Glendening E, Reed A, Carpenter J (1998) F.J.G.S.T.i.n.c.r.f.t.r. Weinhold, NBO Version 3.1

  42. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  PubMed  Google Scholar 

  43. Mohammadzaheri M, Jamehbozorgi S, Ganji MD, Rezvani M, Javanshir Z (2023) Toward functionalization of ZnO nanotubes and monolayers with 5-aminolevulinic acid drugs as possible nanocarriers for drug delivery: a DFT based molecular dynamic simulation. Phys Chem Chem Phys 25(32):21492–21508

    Article  CAS  PubMed  Google Scholar 

  44. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminf 4(1):17. https://doi.org/10.1186/1758-2946-4-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  PubMed  Google Scholar 

  46. Unimuke TO, Louis H, Eno EA, Agwamba EC, Adeyinka ASJAO (2022) Meta-hybrid density functional theory prediction of the reactivity, stability, and IGM of azepane, oxepane, thiepane, and halogenated cycloheptane. 7(16):13704–13720

  47. Mardiana-Idayu A, Riffat SBJE (2011) Buildings. An experimental study on the performance of enthalpy recovery system for building applications 43(9):2533–2538. https://doi.org/10.1016/j.enbuild.2011.06.009

    Article  Google Scholar 

  48. Sajid H, Ayub K, Arshad M, Mahmood T (2019) Highly selective acridinium based cyanine dyes for the detection of DNA base pairs (adenine, cytosine, guanine and thymine). Comp Theor Chem 1163:112509

    Article  CAS  Google Scholar 

  49. Sajid H, Mahmood T, Ayub K (2017) An accurate comparative theoretical study of the interaction of furan, pyrrole, and thiophene with various gaseous analytes. J Mol Model 23(10):1–18

    Article  CAS  Google Scholar 

  50. Louis H, Egemonye TC, Unimuke TO, Inah BE, Edet HO, Eno EA, Adalikwu SA, Adeyinka AS (2022) Detection of carbon, sulfur, and nitrogen dioxide pollutants with a 2D Ca12O12 nanostructured material. ACS Omega 7(39):34929–34943. https://doi.org/10.1021/acsomega.2c03512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nemati-Kande E, Abbasi M, Mohammadi MD (2020) DFT studies on the interactions of pristine, Al and Ga-doped boron nitride nanosheets with CH3X (X=F, Cl and Br). J Mol Struct 1199:126962. https://doi.org/10.1016/j.molstruc.2019.126962

    Article  CAS  Google Scholar 

  52. Louis H, Egemonye TC, Unimuke TO, Inah BE, Edet HO, Eno EA, Adalikwu SA, Adeyinka ASJAo (2022) Detection of carbon, sulfur, and nitrogen dioxide pollutants with a 2D Ca12O12 nanostructured material. 7(39):34929–34943

  53. Pasdar H, Elmi Fard N, Rezvani M (2023) Fabrication of MoS2/Bi2S3 heterostructure for photocatalytic degradation of metronidazole and cefalexin and antibacterial applications under NIR light: experimental and theoretical approach. Applied Physics A 129(5):380

    Article  CAS  Google Scholar 

  54. Rahmanzadeh A, Rezvani M, Ganji MD, Moghim MT (2023) Corrosion protection performance of Laurhydrazide N′-propan-3-one (LHP) adsorbed on zinc surface: a DFT-MD simulation investigation. Materials Today Communications 36:106946

    Article  CAS  Google Scholar 

  55. Louis H, Guo L-J, Zhu S, Hussain S, He T (2019) Computational study on interactions between CO2 and (TiO2) n clusters at specific sites. Chin J Chem Phys 32(6):674–686

    Article  CAS  Google Scholar 

  56. Khan MU, Khalid M, Ibrahim M, Braga AAC, Safdar M, Al-Saadi AA, Janjua MRSA (2018) First theoretical framework of triphenylamine–dicyanovinylene-based nonlinear optical dyes: structural modification of π-linkers. The Journal of Physical Chemistry C 122(7):4009–4018. https://doi.org/10.1021/acs.jpcc.7b12293

    Article  CAS  Google Scholar 

  57. Khan MU, Ibrahim M, Khalid M, Qureshi MS, Gulzar T, Zia KM, Al-Saadi AA, Janjua MRSA (2019) First theoretical probe for efficient enhancement of nonlinear optical properties of quinacridone based compounds through various modifications. Chem Phys Lett 715:222–230. https://doi.org/10.1016/j.cplett.2018.11.051

    Article  CAS  Google Scholar 

  58. Bagheri Z, Peyghan AA (2013) DFT study of NO2 adsorption on the AlN nanocones. Comput Theor Chem 1008:20–26. https://doi.org/10.1016/j.comptc.2012.12.011

    Article  CAS  Google Scholar 

  59. Liang X-Y, Ding N, Ng S-P, Wu C-ML (2017) Adsorption of gas molecules on Ga-doped graphene and effect of applied electric field: a DFT study. Appl Surf Sci 411:11–17. https://doi.org/10.1016/j.apsusc.2017.03.178

    Article  CAS  Google Scholar 

  60. Mehdi Aghaei S, Monshi MM, Torres I, Zeidi SMJ, Calizo I (2018) DFT study of adsorption behavior of NO, CO, NO2, and NH3 molecules on graphene-like BC3: a search for highly sensitive molecular sensor. Applied Surface Science, 427:326–333. https://doi.org/10.1016/j.apsusc.2017.08.048

  61. Sajid H, Mahmood T, Mahmood MH, Ayub K (2019) Comparative investigation of sensor application of polypyrrole for gaseous analytes. J Phys Org Chem 32(8):e3960

    Article  Google Scholar 

  62. Short BR, Vargas MA, Thomas JC, O’Hanlon S, Enright MC (2006) In vitro activity of a novel compound, the metal ion chelating agent AQ+, against clinical isolates of Staphylococcus aureus. J Antimicrob Chemother 57(1):104–109

    Article  CAS  PubMed  Google Scholar 

  63. Kim C, Kim B, Lee SM, Jo C, Lee YH (2002) Electronic structures of capped carbon nanotubes under electric fields. Phys Rev B 65(16):165418. https://doi.org/10.1103/PhysRevB.65.165418

    Article  CAS  Google Scholar 

  64. Louis H, Etiese D, Unimuke TO, Owen AE, Rajee AO, Gber TE, Chima CM, Eno EA, Nfor EN (2022) Computational design and molecular modeling of the interaction of nicotinic acid hydrazide nickel-based complexes with H 2 S gas. RSC Adv 12(47):30365–30380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chandrasekaran A, Betouras JJ (2022) Effect of disorder on density of states and conductivity in higher-order Van Hove singularities in two-dimensional bands. Phys Rev B 105(7):075144

    Article  CAS  Google Scholar 

  66. Khan S, Sajid H, Ayub K, Mahmood T (2020) Adsorption behaviour of chronic blistering agents on graphdiyne; excellent correlation among SAPT, reduced density gradient (RDG) and QTAIM analyses. J Mol Liq 316:113860. https://doi.org/10.1016/j.molliq.2020.113860

    Article  CAS  Google Scholar 

  67. Fazilath Basha A, Liakath Ali Khan F, Muthu S, Raja M (2021) Computational evaluation on molecular structure (Monomer, Dimer), RDG, ELF, electronic (HOMO-LUMO, MEP) properties, and spectroscopic profiling of 8-quinolinesulfonamide with molecular docking studies. Computational and Theoretical Chemistry, 1198  113169. https://doi.org/10.1016/j.comptc.2021.113169

  68. Beheshtian J, Peyghan AA, Bagheri Z (2012) Adsorption and dissociation of Cl2 molecule on ZnO nanocluster. Appl Surf Sci 258(20):8171–8176. https://doi.org/10.1016/j.apsusc.2012.05.016

    Article  CAS  Google Scholar 

  69. Serdaroglu G, Uludag N (2018) Concise total synthesis of (±)-aspidospermidine and computational study: FT-IR, NMR, NBO, NLO, FMO, MEP diagrams. J Mol Struct 1166:286–303. https://doi.org/10.1016/j.molstruc.2018.04.050

    Article  CAS  Google Scholar 

  70. Mary YS, Varghese HT, Panicker CY, Girisha M, Sagar BK, Yathirajan HS, Al-Saadi AA, Van Alsenoy C (2015) Vibrational spectra, HOMO, LUMO, NBO, MEP analysis and molecular docking study of 2,2-diphenyl-4-(piperidin-1-yl)butanamide. Spectrochim Acta Part A Mol Biomol Spectrosc 150:543–556. https://doi.org/10.1016/j.saa.2015.05.090

    Article  CAS  Google Scholar 

  71. Nazir R, Yaqoob J, Khan MU, Gilani MA, Alvi MU, Hussain R, Mustafa G, Alam MM, Imran M (2021) An effective strategy for tuning nonlinear optical response of N-atom functionalized corannulene by alkali metals doping: first theoretical insight. Comput Theor Chem 1205:113430. https://doi.org/10.1016/j.comptc.2021.113430

    Article  CAS  Google Scholar 

  72. Kashyap C, Ullah SS, Mazumder LJ, Kanti Guha A (2018) Non-covalent interaction in benzene and substituted benzene: a theoretical study. Computational and Theoretical Chemistry 1130:134–139. https://doi.org/10.1016/j.comptc.2018.03.023

  73. Rashid M, Yaqoob J, Khalil N, Jamil R, Khan MU, Gilani MA (2022) Nonlinear optical (NLO) response of boron phosphide nanosheet by alkali metals doping: a DFT study. Mater Sci Semicond Process 151:107007. https://doi.org/10.1016/j.mssp.2022.107007

    Article  CAS  Google Scholar 

  74. Jia Z, Pang H, Li H, Wang X (2019) A density functional theory study on complexation processes and intermolecular interactions of triptycene-derived oxacalixarenes. Theoret Chem Acc 138(9):113. https://doi.org/10.1007/s00214-019-2502-6

    Article  CAS  Google Scholar 

  75. Javed M, Khan MU, Hussain R, Abbas F, Ahamad T (2024) Deciphering the detection and electrochemical sensing of the environmental pollutant CO gas with Ga12As12 and Al12As12 nanostructured materials: an insight from first-principle calculations. Journal of Materials Science. 1–23

  76. Ishtiaq M, Khan MU, Hamid A, Yaqoob J, Hussain R, Ali A, Hassan AU, Alshehri SM (2024) Systematic study of the structure-property relationship of C24N24 nanoclusters for the detection and electrochemical sensing of chemical warfare agents: molecular modelling at DFT level. J Mol Struct 1307:137905. https://doi.org/10.1016/j.molstruc.2024.137905

    Article  CAS  Google Scholar 

  77. Idrees M, Khan MU, Yaqoob J, Mustafa G, Anwar A, Khan MU, Hassan AU, Ahamad T (2024) Electrochemical sensing and detection of phosgene and thiophosgene chemical warfare agents (CWAs) by all-boron B38 fullerene analogue: a DFT insight. Z. Phys. Chem (0)

  78. Sajid H, Mahmood T, Ayub K (2018) High sensitivity of polypyrrole sensor for uric acid over urea, acetamide and sulfonamide: a density functional theory study. Synth Met 235:49–60. https://doi.org/10.1016/j.synthmet.2017.11.008

    Article  CAS  Google Scholar 

  79. Ullah F, Kosar N, Arshad MN, Gilani MA, Ayub K, Mahmood T (2020) Design of novel superalkali doped silicon carbide nanocages with giant nonlinear optical response. Opt Laser Technol 122:105855. https://doi.org/10.1016/j.optlastec.2019.105855

    Article  CAS  Google Scholar 

  80. Khan S, Gilani MA, Munsif S, Muhammad S, Ludwig R, Ayub K (2021) Inorganic electrides of alkali metal doped Zn12O12 nanocage with excellent nonlinear optical response. J Mol Graph Model 106:107935. https://doi.org/10.1016/j.jmgm.2021.107935

    Article  CAS  PubMed  Google Scholar 

  81. Edim MM, Enudi OC, Asuquo BB, Louis H, Bisong EA, Agwupuye JA, Chioma AG, Odey JO, Joseph I, Bassey FI (2021) Aromaticity indices, electronic structural properties, and fuzzy atomic space investigations of naphthalene and its aza-derivatives. Heliyon 7(2):e06138. https://doi.org/10.1016/j.heliyon.2021.e06138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Udoikono AD, Louis H, Eno EA, Agwamba EC, Unimuke TO, Igbalagh AT, Edet HO, Odey JO, Adeyinka AS (2022) Reactive azo compounds as a potential chemotherapy drugs in the treatment of malignant glioblastoma (GBM): experimental and theoretical studies. Journal of Photochemistry and Photobiology 10:100116. https://doi.org/10.1016/j.jpap.2022.100116

    Article  CAS  Google Scholar 

  83. Agwupuye JA, Neji PA, Louis H, Odey JO, Unimuke TO, Bisiong EA, Eno EA, Utsu PM, Ntui TN (2021) Investigation on electronic structure, vibrational spectra, NBO analysis, and molecular docking studies of aflatoxins and selected emerging mycotoxins against wild-type androgen receptor. Heliyon 7(7):e07544. https://doi.org/10.1016/j.heliyon.2021.e07544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Agwupuye JA, Neji PA, Louis H, Odey JO, Unimuke TO, Bisiong EA, Eno EA, Utsu PM, Ntui TN (2021) Investigation on electronic structure, vibrational spectra, NBO analysis, and molecular docking studies of aflatoxins and selected emerging mycotoxins against wild-type androgen receptor. Heliyon, 7(7)

  85. Sarkar S, Grønbech TBE, Mamakhel A, Bondesgaard M, Sugimoto K, Nishibori E, Iversen BB (2022) X-ray electron density study of the chemical bonding origin of glass formation in metal–organic frameworks**. Angew Chem Int Ed 61(22):e202202742. https://doi.org/10.1002/anie.202202742

    Article  CAS  Google Scholar 

  86. Hassanpour A, Poor Heravi MR, Khanmohammadi A (2022) Electronic sensors for alkali and alkaline earth cations based on fullerene-C60 and silicon doped on C60 nanocages: a computational study. Journal of Molecular Modeling 28(6):148. https://doi.org/10.1007/s00894-022-05147-2

    Article  CAS  PubMed  Google Scholar 

  87. Doust Mohammadi M, Abdullah HY (2020) The adsorption of chlorofluoromethane on pristine, and Al- and Ga-doped boron nitride nanosheets: a DFT, NBO, and QTAIM study. Journal of Molecular Modeling 26(10):287. https://doi.org/10.1007/s00894-020-04556-5

  88. Parr RG, Szentpály LV, Liu S (1999) Electrophilicity index. Journal of the American Chemical Society 121(9):1922–1924. https://doi.org/10.1021/ja983494x

  89. Chattaraj PK, Maiti B, Sarkar U (2003) Philicity: A unified treatment of chemical reactivity and selectivity. J Phys Chem A 107(25):4973–4975. https://doi.org/10.1021/jp034707u

    Article  CAS  Google Scholar 

  90. Chattaraj PK, Roy DR (2007) Update 1 of: electrophilicity index. Chem. Rev 107(9):PR46-PR74

  91. Edet HO, Louis H, Benjamin I, Gideon M, Unimuke TO, Adalikwu SA, Nwagu AD, Adeyinka AS (2022) Hydrogen storage capacity of C12X12 (X = N, P, and Si). Chemical Physics Impact 5:100107. https://doi.org/10.1016/j.chphi.2022.100107

    Article  Google Scholar 

  92. Doust Mohammadi M, Abdullah HY, Louis H, Mathias GE (2022) 2D boron nitride material as a sensor for H2SiCl2. Computational and Theoretical Chemistry, 1213:113742. https://doi.org/10.1016/j.comptc.2022.113742

  93. Prasongkit J, Amorim RG, Chakraborty S, Ahuja R, Scheicher RH, Amornkitbamrung V (2015) Highly sensitive and selective gas detection based on silicene. The Journal of Physical Chemistry C 119(29):16934–16940. https://doi.org/10.1021/acs.jpcc.5b03635

    Article  CAS  Google Scholar 

  94. Xu P, Cui L, Gao S, Na N, Ebadi AG (2022) A theoretical study on sensing properties of in-doped ZnO nanosheet toward acetylene. Mol Phys 120(5):e2002957

    Article  Google Scholar 

  95. Padash R, Esfahani MR, Rad AS (2021) The computational quantum mechanical study of sulfamide drug adsorption onto X12Y12 fullerene-like nanocages: detailed DFT and QTAIM investigations. J Biomol Struct Dyn 39(15):5427–5437

    Article  CAS  PubMed  Google Scholar 

  96. Baei MT, Soltani A, Hashemian S, Mohammadian H (2014) Al12N12 nanocage as a potential sensor for phosgene detection. Can J Chem 92(7):605–610. https://doi.org/10.1139/cjc-2014-0056

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Researchers Supporting Project number (RSP2024R29), King Saud University, Riyadh, Saudi Arabia

Funding

Funding is provided by King Saud University, Riyadh, Saudi Arabia through Researchers Supporting Project number (RSP2024R29).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed efficiently and dedicatedly in this manuscript, and their credit to this manuscript is summarized as; ML contributed to the writing—original draft, investigation, validation, visualization, formal analysis, acquisition, and interpretation of data. JY and MUK had substantial contribution to the research design, conceptualization, methodology, project administration, investigation, data curation, supervision, review and editing, and approval of the submitted version of the manuscript. RH had substantial contributions to the formal analysis, visualization, data curation, validation, and writing—review and editing. MAG, MI, and MI had substantial contributions to the visualization, data curation, validation, and writing—review and editing. AUH had substantial contribution to the formal analysis, interpretation of data, validation, software, and writing—review and editing. SMA had substantial contributions to the funding, acquisition, software, data curation, resources, investigation, and writing—review and editing.

Corresponding authors

Correspondence to Junaid Yaqoob or Muhammad Usman Khan.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 34.6 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liaqat, M., Yaqoob, J., Khan, M.U. et al. Elucidating the mechanistic sensing capability of novel tetragonal graphene quantum dot towards tobacco alkaloids: a DFT study. Struct Chem (2024). https://doi.org/10.1007/s11224-024-02325-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11224-024-02325-1

Keywords

Navigation