Skip to main content
Log in

DFT computational study of optical properties for bis-Schiff bases of 8-aminoquinoline derivatives and furan-2, 3-di-carbaldehyde

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Optimization of nine bis-Schiff bases derived from 5-substituted-8-aminoquinoline (I) and furan-2, 3-di-carbaldehyde (II) molecules was performed using density functional theory (DFT) in B3LYP/6-311G++ (d, p) level of theory and based on the optimized structures, structural parameters, dipole moments, as well as frontier molecular orbitals of the desired bis-Schiff bases (III) were calculated. The statistical thermodynamic functions, i.e., enthalpy changes (ΔHºr = 10.21 kcalmol−1) and Gibbs energy changes (ΔGºr = 12.62 kcalmol1) were obtained from the theoretical harmonic frequencies (freq keyword). Each of these imines has four geometrical isomers (ZZ, EZ, ZE, and EE), and their relative stability for III-H was studied. It was found that ZZ (III-H) is the most unstable (9.20 kcalmol−1) in four isomers. To check the nonlinear optical (NLO) properties of these organic compounds the first hyperpolarizability (βtotal) and average polarizability (αave) parameters were calculated. All of these bis-Schiff bases (III) have βtotal values larger than the magnitude of the βtotal value for urea (a standard molecule) and III-NO2 is the best NLO material in studied compounds. So for III-NO2, Mulliken atomic charges analysis, frontier orbitals, and molecular electrostatic potential (MEP) surfaces have been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

The data are in a supplementary file.

References

  1. Madhavan J, Aruna S, Prabha K, Packiam J, Ginson JP, Selvakumar S, Sagayaraj P (2006) Growth and characterization of a novel NLO crystal l-histidine hydrofluoride dihydrate (LHHF). J crystal growth. https://doi.org/10.1016/j.jcrysgro.2006.05.050

    Article  Google Scholar 

  2. Hussain A, Usman Khan M, Ibrahim M, Khalid M, Ali A, Hussain S, Saleem M, Ahmad N, Muhammad S, Al-Sehemi AG, Sultan A (2019) Structural parameters, electronic, linear and nonlinear optical exploration of thiopyrimidine derivatives: a comparison between DFT/TDDFT and experimental study. J Mol Struc. https://doi.org/10.1016/j.molstruc.2019.127183

    Article  Google Scholar 

  3. Tariq S, Raza AR, Khalid M, Rubab SL, Khan MU, Ali A, Tahir MN, Braga AAC (2019) Synthesis and structural analysis of novel indole derivatives by XRD, spectroscopic and DFT studies. J Mole Struct. https://doi.org/10.1016/j.molstruc.2019.127438

    Article  Google Scholar 

  4. Khalid M, Shafiq I, Hani U, Mahmood K, Hussain R, Rehman MF, Assiri MA, Imran M, Akram MS (2023) Effect of different end‑capped donor moieties on non‑fullerenes based non‑covalently fused‑ring derivatives for achieving high‑performance NLO properties. Sci Rep. https://doi.org/10.1038/s41598-023-28118-w

  5. Khalid M, Arshad NM, Murtaza S, Shafiq I, Haroon M, Asiri AM, de AlcântaraMorais SF, Braga AA (2022) Enriching NLO efficacy via designing non-fullerene molecules with the modification of acceptor moieties into ICIF2F: an emerging theoretical approach. RSC Adv.https://doi.org/10.1039/D2RA01127A

  6. Sun GH, Sun XT, Sun ZH, Wang XQ, Liu XJ, Zhang GH, Xu D (2009) Growth and characterization of a nonlinear optical crystal: l-histidine trifluoroacetate. J Cryst Growth. https://doi.org/10.1016/j.jcrysgro.2009.06.022

    Article  Google Scholar 

  7. Kim K, Jordan KD (1994) Comparison of density functional and MP2 calculations on the water monomer and dimer. J Phys Chem. https://doi.org/10.1021/j100091a024

    Article  Google Scholar 

  8. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem. https://doi.org/10.1021/j100096a001

    Article  Google Scholar 

  9. Trujillo A, Fuentealba M, Carrillo D, Manzur C, Ledoux-Rak I, Hmon JR, Saillard JY (2010) Synthesis, spectral, structural, second-order nonlinear optical properties and theoretical studies on new organometallic donor−acceptor substituted nickel(II) and copper(II) unsymmetrical Schiff-base complexes. Inorg Chem. https://doi.org/10.1021/ic902126a

    Article  PubMed  Google Scholar 

  10. Rivera JM, Guzman D, Rodriguez M, Lamere JF, Nakatani K, Santillan R, Lacroix PG, Farfan N (2006) Synthesis, characterization and nonlinear optical properties in a series of new chiral organotin (IV) Schiff base complexes. J Organomet Chem. https://doi.org/10.1016/j.jorganchem.2005.12.038

    Article  Google Scholar 

  11. Lacroix PG (2001) Second-order optical nonlinearities in coordination chemistry: the case of bis(salicylaldiminato) metal Schiff base complexes. Eur J Inorg Chem. https://doi.org/10.1002/1099-0682(200102)2001

    Article  Google Scholar 

  12. Lacroix PG, Bella SD, Ledoux I (1996) Synthesis and second-order nonlinear optical properties of new copper(II), nickel(II), and zinc(II) schiff-base complexes. Toward a role of inorganic chromophores for second harmonic generation. Chem Mater. https://doi.org/10.1021/cm950426q

    Article  Google Scholar 

  13. Rezvan VH (2022) Study of molecular structure, optical properties, and frontier molecular orbitals for some of the 4-substituted cinnolines: Ab initio calculations. Adv J Chem A. https://doi.org/10.22034/ajca.2022.296241.1273

    Article  Google Scholar 

  14. Maza S, Kijatkin C, Bouhidel Z, Pillet S, Schanie D (2020) Synthesis, structural investigation and NLO properties of three 1,2,4-triazole Schiff bases. J Mol Struc. https://doi.org/10.1016/j.molstruc.2020.128492

    Article  Google Scholar 

  15. Rezvan VH, Pilevar-Maleki B (2018) Structural and optical properties of some 5, 8-diaminoquinoxaline Schiff bases: quantum chemical calculations. Der Chem Sin 9(1):544–554

    Google Scholar 

  16. Kavitha HP, Arthi P, Arulmurugan S, Kavipriya R, Vennil JP (2019) Density functional theory calculations and in silico studies on the Schiff base derivatives with antibacterial activities. Asian J Pharm Clin Res. https://doi.org/10.22159/ajpcr.2019.v12i5.32128

    Article  Google Scholar 

  17. Yildirim N, Demir N, Alpaslan G, Boyacioğlu B, Yildiz M, Ünver H (2018) DFT calculation, biological activity, anion sensing studies, and crystal structure of (E)-4-chloro-2-[(pyridin-2-ylimino)-methyl]phenol. J Serb Chem Soc. https://doi.org/10.2298/JSC171001009Y

    Article  Google Scholar 

  18. Albayrak C, Kastas G, Odabasoglu M, Frank R (2013) The prototropic tautomerism and substituent effect through strong electron-withdrawing group in (E)-5-(diethylamino)-2-[(3-nitrophenylimino)methyl]phenol. Spectrochim Acta Part A: Mol Biomol Spectrosc. https://doi.org/10.1016/j.saa.2013.05.044

    Article  Google Scholar 

  19. Frisch A, Nielson AB, Holder AJ (2000) GaussView User’s Manual. Gaussian Inc., Pittsburgh, PA

    Google Scholar 

  20. Frisch MJ et al (2009) Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT

  21. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev. https://doi.org/10.1103/PhysRev.140.A1133

    Article  MathSciNet  Google Scholar 

  22. Becke AD (1993) Density-functionalthermochemistry III. The role of exact exchange. J Chem Phys. https://doi.org/10.1063/1.464913

    Article  Google Scholar 

  23. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. https://doi.org/10.1103/PhysRevB.37.785

    Article  Google Scholar 

  24. Miehlich B, Savin A, Stoll H, Preuss H (1989) Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chem Phys Lett. https://doi.org/10.1016/0009-2614(89)87234-3

    Article  Google Scholar 

  25. Leach AR (2001) Molecular modelling-principles and applications, 2nd edn. Prentice Hall, Harlow

    Google Scholar 

  26. Chinnasamy RP, Sundararajan R, Govindraj S (2010) Synthesis, characterization, and analgesic activity of novel Schiff base of isatin derivatives. J Adv Pharm Technol Res. https://doi.org/10.4103/0110-5558.72428

    Article  PubMed  PubMed Central  Google Scholar 

  27. Arora R, Kapoor A, Gill NS, Rana AC (2012) Synthesis of novel Schiff base analogs of4-amino-1,5-dimethyl-2-phenylpyrazol-3-one and their evaluation for antioxidantand anti-inflammatory activity. Int Res J Pharm. https://doi.org/10.1016/j.bmc.2012.04.058

    Article  Google Scholar 

  28. Alam MS, Choi JH, Lee DU (2012) Synthesis of novel Schiff base analogs of 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one and their evaluation for antioxidant and anti-inflammatory activity. Bioorg Med Chem. https://doi.org/10.1016/j.bmc.2012.04.058

    Article  PubMed  Google Scholar 

  29. Costes JP, Lamere JF, Lepetit C, Lacroix PG, Dahan F (2005) Synthesis, crystal structures, and nonlinear optical (NLO) properties of new Schiff-base nickel (II) complexes. Toward a new type of molecular switch? Inorg Chem. https://doi.org/10.1021/ic048578

    Article  PubMed  Google Scholar 

  30. Zhang CR, Chen HS, Wang GH (2004) Molecular modeling of 3,4-pyridinedicarbonitrile dye sensitizer for solar cells using quantum chemical calculations. Chem Res Chin. https://doi.org/10.1016/j.jscs.2010.05.002

    Article  Google Scholar 

  31. Sun Y, Chen X, Sun L, Guo X, Lu W (2003) Nanoring structure and optical properties of Ga8As8. Chem Phys Lett. https://doi.org/10.1016/j.cplett.2003.09.115

    Article  Google Scholar 

  32. Christiansen O, Gauss J, Stanton JF (1999) Frequency-dependent polarizabilities and first hyperpolarizabilities of CO and H2O from coupled cluster calculations. Chem Phys Lett. https://doi.org/10.1016/S0009-2614(99)00358-9

    Article  Google Scholar 

  33. Hinchliffe A, Nikolaidi B, Ve Machado HJS (2004) Density functional studies of the dipole polarizabilities of substituted stilbene, azoarene and related push-pull molecules. Int J Mol Sci. https://doi.org/10.3390/i5050224

    Article  Google Scholar 

  34. Soscun H, Castellano O, Bermudez Y, Mendoza CT, Marcano A, Alvarado (2002) Linear and nonlinear optical properties of pyridine N-oxide molecule. J Mol Struct (Theochem). https://doi.org/10.1016/S0166-1280(02)00222-1

    Article  Google Scholar 

  35. Kleinman DA (1962) Nonlinear dielectric polarization in optical media. Phys Rev. https://doi.org/10.1103/PhysRev.126.1977

    Article  Google Scholar 

  36. Karpagam J, Sundaraganesan N, Sebastian S, Manoharan S, Kurt M (2010) Molecular structure, vibrational spectroscopic, first-order hyperpolarizability and HOMO, LUMO studies of 3-hydroxy-2-naphthoic acid hydrazide. J Raman Spectrosc. https://doi.org/10.1002/jrs.2408

    Article  Google Scholar 

  37. Shabbir M, Muhammad Ramzan Saeed AJ, Zhongmin S (2009) Investigation of dibenzoboroles having π-electrons: Toward a new type of two-dimensional NLOmolecular switch? J Phys Chem C. https://doi.org/10.1021/jp903075s

    Article  Google Scholar 

  38. Liliya Islamova N, Kalinin A, Lebedeva V, Fazleeva M, Fominykh D, Balakina MYu (2023) Synthesis of indole-based chromophores with TCF acceptor and the study of the quinoxalinone core effect on the linear and nonlinear optical properties. Arkivoc. https://doi.org/10.24820/ark.5550190.p011.876

    Article  Google Scholar 

  39. Tahir MN, Mirza SH, Khalid M, Ali A, Khan MU, Albert A, Braga C (2019) Synthesis, single crystal analysis and DFT based computational studies of 2,4-diamino-5-(4-chlorophenyl)-6-ethylpyrim idin-1-ium 3,4,5-trihydroxybenzoate -methanol (DETM). J Mol Struc. https://doi.org/10.1016/j.molstruc.2018.11.089

    Article  Google Scholar 

  40. Ashfaq M, Tahir MN, Kuznetsov A, Mirza SH, Khalid M, Ali A (2020) DFT and single crystal analysis of the pyrimethamine-based novel co-crystal salt: 2,4-diamino-5-(4-chloro-phenyl)-6-ethylpyrimidin-1-ium:4-hydroxybenzoate:methanol:hydrate (1:1:1:1) (DEHMH). J Mol Struc. https://doi.org/10.1016/j.molstruc.2019.127041

    Article  Google Scholar 

  41. Shafiq I, Amanat I, Khalid M, Asghar MA, Baby R, Ahmed S, Alshehri SM (2023) Influence of azo-based donor modifications on the nonlinear optical amplitude of D-π-A based organic chromophores: a DFT/TD-DFT exploration. Synth Met. https://doi.org/10.1016/j.synthmet.2023.117410

    Article  Google Scholar 

  42. Khalid M, Ali A, Jawaria R, Asghar MA, Asim S, Khan MU, Hussain R, Rehman MF, Ennis CJ, Akram MS (2020) First principles study of electronic and nonlinear optical properties of A-D–π–A and D–A–D–π–A configured compounds containing novel quinoline–carbazole derivatives. RSC Adv. https://doi.org/10.1039/D0RA02857F

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ali A, Khalid M, Ashfaq M, Malik AN, Tahir MN, Assiri MA, Imran M, de AlcântaraMorais Sara Figueirêdo, Braga Ataualpa Albert Carmo (2022) Preparation, QTAIM and single-crystal exploration of the pyrimethamine-based co-crystal salts with substituted benzoic acids. Chem Select. https://doi.org/10.1002/slct.202200349

    Article  Google Scholar 

  44. Uludag N, Serdaroglu G (2018) An improved synthesis, spectroscopic (FT-IR, NMR) study and DFT computational analysis (IR, NMR, UV–Vis, MEP diagrams, NBO, NLO, FMO) of the 1, 5-methanoazocino [4,3-b] indole core structure. J Mol Struct. https://doi.org/10.1016/j.molstruc.2017.11.032

    Article  Google Scholar 

  45. Kavitha T, Velraj G (2018) Molecular structure, spectroscopic and docking analysis of 1,3-diphenylpyrazole-4-propionic acid: a good prostaglandin reductase inhibitor. J Mol Struct. https://doi.org/10.1016/j.molstruc.2017.11.031

    Article  Google Scholar 

Download references

Funding

The authors have no financial or proprietary interests in any material discussed in this article.

Author information

Authors and Affiliations

Authors

Contributions

Both authors have participated in (a) conception and design, or analysis and interpretation of the data; Dr. Rezvan has participated in drafting the article or revising it critically for important intellectual content; and (c) approval of the final version.

Corresponding author

Correspondence to Vahideh Hadigheh Rezvan.

Ethics declarations

Ethical approval

This declaration is “not applicable.”.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2281 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadigheh Rezvan, V., Aminivand, Y. DFT computational study of optical properties for bis-Schiff bases of 8-aminoquinoline derivatives and furan-2, 3-di-carbaldehyde. Struct Chem (2024). https://doi.org/10.1007/s11224-024-02296-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11224-024-02296-3

Keywords

Navigation