Skip to main content
Log in

Crystal structure, molecular docking with SARS-CoV-2 receptors, and potential drug property of tetrahedral Zn(II) complexes

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The recent global pandemic by the outbreak of the SARS-CoV-2 virus caused about seven million deaths worldwide. The WHO approved the repurposing of antiviral drugs as the treatment protocol for COVID-19. Yet, it was insufficient to stop the outbreak of COVID-19. By virtue of a broad spectrum of variable oxidation numbers, geometries, tuneable redox, and kinetic and thermodynamic properties, transition metal complexes offer themselves as a viable alternative to the antiviral drugs against SARS-CoV-2. The computational methods in biology and chemistry are a promising starting point in this regard. Here, we present the synthesis, crystal structure, docking study with SARS-CoV-2 receptors, and potential drug property of two tetrahedral Zn(II) complexes, viz. [Zn(µ2-Bz)3]n (1) and [Zn(Phen)Cl2]2 (2) (Bz = benzoate ion, Phen = 1,10-phenanthroline). They were synthesized at room temperature and characterized by elemental analyses, FT-IR spectroscopy, thermal analysis (TGA/DTG), powder X-ray diffraction (PXRD), and single crystal X-ray diffraction. Complex 1 is a coordination polymer with unusual triply-bridged triangular secondary building unit (SBU), whereas complex 2 is a novel supramolecular dimer. The crystal structures of 1 and 2 are stabilized by a number of supramolecular interactions, which ultimately lead to a 3D architecture for each of them. Their crystal packing is discussed in details, with inputs from energy calculations, by the analysis of electrostatic potential mapped on the Hirshfeld surface and two-dimensional (2D)-fingerprint plot by CrystalExplorer. A molecular docking study of the synthesized complexes was performed against seven important proteins of SARS-CoV-2. ADMET calculations were used to evaluate their drug potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Hui DS, David S, Memish ZA, Zumla A (2014) Curr Opin Pulm Med 20:233–241. https://doi.org/10.1097/MCP.0000000000000046

    Article  PubMed  Google Scholar 

  2. Boopathia S, Pomab AB, Kolandaivel P (2021) J Biomol Struct Dyn 39:3409–3418. https://doi.org/10.1080/07391102.2020.1758788

    Article  CAS  Google Scholar 

  3. Chan JF-W, Kok K-H, Zhu Z, Chu H, To KK-W, Yuan S, Yuen K-Y (2020) Emerg microbes & infect 9:221–236. https://doi.org/10.1080/22221751.2020.1719902

    Article  CAS  Google Scholar 

  4. Huang Y, Yang C, Xu X-F, Xu W, Liu S-W (2020) Acta Pharmacol Sin 41:1141–1149. https://doi.org/10.1038/s41401-020-0485-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, Li F (2020) Proc Acad Nat Sci 117:11727–11734. https://doi.org/10.1073/pnas.2003138117

    Article  CAS  Google Scholar 

  6. Trougakos IP, Stamatelopoulos K, Terpos E, Tsitsilonis OE, Aivalioti E, Paraskevis D, Kastritis E, Pavlakis GN, Dimopoulos MA (2021) J Biomed Sci 28:1–18. https://doi.org/10.1186/s12929-020-00703-5

    Article  CAS  Google Scholar 

  7. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, Si H-R, Zhu Y, Li B, Huang C-L, Chen H-D, Chen J, Luo Y, Guo H, Jiang R-D, Liu M-Q, Chen Y, Shen X-R, Wang X, Zheng X-S, Zhao K, Chen Q-J, Deng F, Liu L-L, Yan B, Zhan F-X, Wang Y-Y, Xiao G-F, Shi Z-L (2020) Nature 579:270–273. https://doi.org/10.1038/s41586-020-2012-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xu X, Chen P, Wang J, Feng J, Zhou H, Li X, Zhong W, Hao P (2020) Sci China Life Sci 63:457–460. https://doi.org/10.1007/s11427-020-1637-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pillaiyar T, Manickam M, Namasivayam V, Hayashi Y, Jung S-H (2016) J Med Chem 59:6595–6628. https://doi.org/10.1021/acs.jmedchem.5b01461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R (2003) Science 300:1763–1767. https://doi.org/10.1126/science.1085658

    Article  CAS  PubMed  Google Scholar 

  11. Chen Y, Liu Q, Guo D (2020) J Med Virol 92:418–423. https://doi.org/10.1002/jmv.25681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shin D, Mukherjee R, Grewe D, Bojkova D, Baek K, Bhattacharya A, Schulz L, Widera M, Mehdipour AR, Tascher G, Geurink PP, Wilhelm A (2020) van der Heden van Noort GJ, Ovaa H, Müller S, Knobeloch K-P, Rajalingam K, Schulman BA, Cinatl J, Hummer G, Ciesek S, Dikic I. Nature 587:657–662. https://doi.org/10.1038/s41586-020-2601-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sacco MD, Ma C, Lagarias P, Gao A, Townsend JA, Meng X, Dube P, Zhang X, Hu Y, Kitamura N, Hurst B, Tarbet B, Marty MT, Kolocouris A, Xiang Y, Chen Y, Wang, (2020) J Sci Adv 6:eabe0751. https://doi.org/10.1126/sciadv.abe0751

    Article  CAS  Google Scholar 

  14. Gao K, Wang R, Chen J, Tepe JJ, Huang W-W (2021) J Med Chem 64:16922–16955. https://doi.org/10.1021/acs.jmedchem.1c00409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pal M, Musib D, Roy M (2020) New J Chem 45:1924–1933. https://doi.org/10.1039/D0NJ04578K

    Article  Google Scholar 

  16. Pawełczyk A, Zaprutko L (2020) Future Med Chem 12:1743–1757. https://doi.org/10.4155/fmc-2020-0204

    Article  CAS  PubMed  Google Scholar 

  17. Anthony EJ, Bolitho EM, Bridgewater HE, Carter OWL, Donnelly JM, Imberti C, Lant EC, Lermyte F, Needham RJ, Palau M, Sadler PJ, Shi H, Wang F-X, Zhang W-Y, Zhang Z (2020) Chem Sci 11:12888–12917. https://doi.org/10.1039/D0SC90284E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Boros E, Dyson PJ, Gasser G (2020) Chem 6:41–60. https://doi.org/10.1016/j.chempr.2019.10.013

    Article  CAS  PubMed  Google Scholar 

  19. Mjos KD, Orvig C (2014) Chem Rev 114:4540–4563. https://doi.org/10.1021/cr400460s

    Article  CAS  PubMed  Google Scholar 

  20. Karges J (2020) ChemBioChem 21:3044–3046. https://doi.org/10.1002/cbic.202000397

    Article  CAS  PubMed  Google Scholar 

  21. Meier-Menches SM, Gerner C, Berger W, Hartinger CG, Keppler BK (2018) Chem Soc Rev 47:909–928. https://doi.org/10.1039/C7CS00332C

    Article  CAS  PubMed  Google Scholar 

  22. Karges J, Stokes RW, Cohen SM (2021) Trends Chem 3:523–534. https://doi.org/10.1016/j.trechm.2022.11.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Weder JE, Dillon CT, Hambley TW, Kennedy BJ, Lay PA, Biffin JR, Regtop HL, Davies NM (2002) Coord Chem Rev 232:95–126. https://doi.org/10.1016/s0010-8545(02)00086-3

    Article  CAS  Google Scholar 

  24. Karges J, Cohen SM (2021) ChemBioChem 22:1–9. https://doi.org/10.1002/cbic.202100186

    Article  CAS  Google Scholar 

  25. Cirri D, Pratesi A, Marzo T, Messori L (2021) Expert Opin Drug Discovery 16:39–46. https://doi.org/10.1080/17460441.2020.1819236

    Article  CAS  Google Scholar 

  26. de Paiva REF, Neto AM (2020) ISantos IA, Jardim ACG, Corbi PP, Bergamini FRG. Dalton Trans 49:16004–16033. https://doi.org/10.1039/D0DT02478C

    Article  PubMed  Google Scholar 

  27. Kumar S, Choudhary M (2023) New J Chem 232:116296. https://doi.org/10.1039/D3NJ01351K

    Article  Google Scholar 

  28. Ahmed YM, Omar MM, Mohamed GG (2022) J Iran Chem Soc 19:901–919. https://doi.org/10.1007/s13738-021-02359-w

    Article  CAS  Google Scholar 

  29. Al-Janabi ASM, Elzupir AO, Abou-Krisha MM, Yousef TA (2023) Inorganics 11:63. https://doi.org/10.3390/inorganics11020063

    Article  CAS  Google Scholar 

  30. Yadav O, Kumar M, Mittal Yadav HK, Seidel V, Ansari A (2022) Front Pharmacol 13:982484. https://doi.org/10.3389/fphar.2022.982484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Read SA, Obeid S, Ahlenstiel C, Ahlenstiel G (2019) Adv Nutr 10:696–710. https://doi.org/10.1093/advances/nmz013

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ghaffari H, Tavakoli A, Moradi A, Tabarraei A, Bokharaei-Salim F, Zahmatkeshan M, Farahmand M, Javanmard D, Kiani SJ, Esghaei M, Pirhajati-Mahabadi V (2019) J Biomed Sci 26:1–10. https://doi.org/10.1186/s12929-019-0563-4

    Article  CAS  Google Scholar 

  33. Pormohammad A, Monych NK, Turner RJ (2021) Int J Mol Sci 47:326–334. https://doi.org/10.3892/ijmm.2020.4790

    Article  CAS  Google Scholar 

  34. Rahman MT, Idid SZ (2021) Biol Trace Elem Res 199:550–558. https://doi.org/10.1007/s12011-020-02194-9

    Article  PubMed  Google Scholar 

  35. Islam SMN, Dutta D, Sharma P, Verma AK, Frontera A, Bhattacharyya MK (2019) Inorganica Chim Acta 498:119108–119118. https://doi.org/10.1016/j.ica.2019.119108

    Article  CAS  Google Scholar 

  36. Bhattacharyya MK, Dutta D, Islam SMN, Frontera A, Sharma P, Verma AK, Das A (2020) Inorganica Chim Acta 501:119233–119246. https://doi.org/10.1016/j.ica.2019.119233

    Article  CAS  Google Scholar 

  37. Islam SMN, Dutta D, Verma AK, Nath H, Frontera A, Sharma P, Bhattacharyya MK (2019) Inorganica Chim Acta 498:119161–119174. https://doi.org/10.1016/j.ica.2019.119161

    Article  CAS  Google Scholar 

  38. Islam SMN, Borah KK, Raza MA, Öztürkkan FE (2023) Polyhedron 233:116304–116316. https://doi.org/10.1016/j.poly.2023.116304

    Article  CAS  Google Scholar 

  39. Bruker AXS Inc. (2007) Madison, Wisconsin, USA, 2007 CrossRef CAS PubMed; GM Sheldrick, A short history of SHELX. Acta Crystallogr Sect A Fundam Crystallogr 64:112–122

    Google Scholar 

  40. Bruker AXS Inc. (2001) Programme Name (s). Madison, Wisconsin, USA

  41. Sheldrick GM (2008) Acta Crystallogr A 64:112–122

    Article  CAS  PubMed  Google Scholar 

  42. Farrugia LJ (1999) J Appl Crystallogr 32:837–838. https://doi.org/10.1107/S0021889812029111

    Article  CAS  Google Scholar 

  43. Brandenburg K (2008) Diamond: Visual Crystal Structure Information System (Version 3.1f), Crystal Impact GbR, Bonn

  44. Spackman MA, Byrom PG (1997) Chem Phys Lett 267:215–220. https://doi.org/10.1016/S0009-2614(97)00100-0

    Article  CAS  Google Scholar 

  45. McKinnon JJ, Spackman MA, Mitchel AS (2007) Acta Crystallogr B 60:627–668. https://doi.org/10.1107/S0108768104020300

    Article  CAS  Google Scholar 

  46. Spackman MA, Jayatilaka D (2009) CrystEngComm 11:19–32. https://doi.org/10.1039/B818330A

    Article  CAS  Google Scholar 

  47. Islam SMN, Borah KK, Öztürkkan FE, Raza MA, Frontera A, Gil DM (2022) J Mol Struct 1268:133686–133698. https://doi.org/10.1016/j.molstruc.2022.133686

    Article  CAS  Google Scholar 

  48. Spackman PR, Turner MJ, McKinnon JJ, Wolff SK, Grimwood DJ, Jayatilaka D, Spackman MA (2021) J Appl Cryst 54:1006–1011. https://doi.org/10.1107/S1600576721002910

    Article  CAS  Google Scholar 

  49. Parkin A, Barr G, Dong W, Gilmore CJ, Jayatilaka D, McKinnon JJ, Spackman MA, Wilson CC (2007) CrystEngComm 9:648–652. https://doi.org/10.1039/B704177B

    Article  CAS  Google Scholar 

  50. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, Revision D.01

  51. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104. https://doi.org/10.1063/1.3382344

    Article  CAS  PubMed  Google Scholar 

  52. Weigend F (2006) Phys Chem Chem Phys 8:1057–1065. https://doi.org/10.1039/B515623H

    Article  CAS  PubMed  Google Scholar 

  53. Bader RFW (1998) J Phys Chem 102:7314–7323. https://doi.org/10.1021/jp981794v

    Article  CAS  Google Scholar 

  54. Lu T, Chen F (2012) J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  55. Contreras-Garcia J, Johnson E, Keinan S, Chaudret R, Piquemal J-P, Beratan D, Yang W (2011) J Chem Theory Comput 7:625–632. https://doi.org/10.1021/ct100641a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Humphrey W, Dalke A, Schulten K (1996) J Molec Graphics 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  Google Scholar 

  57. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Adv Drug Deliv Rev 23:3–25. https://doi.org/10.1016/S0169-409X(96)00423-1

    Article  CAS  Google Scholar 

  58. Daina A, Michielin O, Zoete V (2017) Sci Rep 7:42717. https://doi.org/10.1038/srep42717

    Article  PubMed  PubMed Central  Google Scholar 

  59. Banerjee P, Eckert AO, Schrey AK, Preissner R (2018) Nucleic Acids Res 46:W257–W263. https://doi.org/10.1093/nar/gky318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Trott O, Olson AJ (2009) Effic Optim Multithreading 31:455–461

    Google Scholar 

  61. Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L, Wang X (2020) Nature 581:215–220. https://doi.org/10.1038/s41586-020-2180-5

    Article  CAS  PubMed  Google Scholar 

  62. Mannar D, Saville JW, Zhu X, Srivastava SS, Berezuk AM, Tuttle KS, Marquez AC, Sekirov I, Subramaniam S (2022) Science 375:760–764. https://doi.org/10.1126/science.abn7760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Zhang B, Li X, Zhang L, Peng C, Duan Y, Yu J, Wang L, Yang K, Liu F, Jiang R, Yang X, You T, Liu X, Yang X, Bai F, Liu H, Liu X, Guddat LW, Xu W, Xiao G, Qin C, Shi Z, Jiang H, Rao Z, Yang H (2020) Nature 582:289–293. https://doi.org/10.1038/s41586-020-2223-y

    Article  CAS  PubMed  Google Scholar 

  64. Osipiuk J, Jedrzejczak R, Tesar C, Endres M, Stols L, Babnigg G, Kim Y, Michalska K, Joachimiak A (2020) RSCB PDB 10. https://www.rcsb.org/structure/6w9c

  65. Yin W, Mao C, Luan X, Shen D-D, Shen Q, Su H, Wang X, Zhou F, Zhao W, Gao M, Chang S, Xie Y-C, Tian G, Jiang H-W, Tao S-C, Shen J, Jiang Y, Jiang H, Xu Y, Zhang S, Zhang Y, Xu HE (2020) Science 368:1499–1504. https://doi.org/10.1126/science.abc1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kim Y, Wower J, Maltseva N, Chang C, Jedrzejczak R, Wilamowski M, Kang S, Nicolaescu V, Randall G, Michalska K, Joachimiak A (2021) Commun Biol 4:1–11. https://doi.org/10.1038/s42003-021-01735-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rosas-Lemus M, Minasov G, Shuvalova L, Inniss NL, Kiryukhina O, Brunzelle J, Satchell KJF (2020) Science Signaling 13:eabe1202. https://doi.org/10.1126/scisignal.abe1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fraser BJ, Beldar S, Seitova A, Hutchinson A, Mannar D, Li Y, Kwon D, Tan R, Wilson RP, Leopold K, Subramaniam S, Halabelian L, Arrowsmith CH, Bénard F (2022) Nat Chem Biol 18:963–971. https://doi.org/10.1038/s41589-022-01059-7

    Article  CAS  PubMed  Google Scholar 

  69. Biovia DS (2021) Dassault Systèmes, BIOVA Discovery Studio Visualizer 2021, v21.1.0.20298, San Diego: Dassault Systèmes (n.d.)

  70. Gomez LM, Ferez FS, Calvet T, Bardia MF, Pons J (2020) Inorganica Chim Acta 506:119561–119561. https://doi.org/10.1016/j.ica.2020.119561

    Article  CAS  Google Scholar 

  71. Bellamy LJ (1980) The Infrared Spectra of Complex Molecules, 2, 2nd edn. Chapman & Hall, London/New York

    Book  Google Scholar 

  72. Nakamoto K (1997) Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th edn. John Wiley & Sons, New York

    Google Scholar 

  73. Zong G-C, Huo L-X, Ren N, Zhang J-J, Qi X-X, Gao J, Geng L-N, Wang S-P, Shi S-K (2015) Dalton Trans 44:14877–14886. https://doi.org/10.1039/C5DT01969A

    Article  CAS  PubMed  Google Scholar 

  74. Yang L, Powell DR, Houser RP (2007) Dalton Trans 9:955–964. https://doi.org/10.1039/B617136B

    Article  Google Scholar 

  75. Ansari IA, Sama F, Raizada M, Shahid M, Ahmad M, Siddiqi ZA (2016) New J Chem 40:9840–9852. https://doi.org/10.1039/C6NJ02150F

    Article  CAS  Google Scholar 

  76. Tarushi A, Totta X, Raptopoulou CP, Psycharis V, Psomasa G, Kessissoglou DP (2012) Dalton Trans 41:7082–7091. https://doi.org/10.1039/C2DT30547J

    Article  CAS  PubMed  Google Scholar 

  77. Chen BL, Ockwig NW, Millward AR, Contreras DS, Yaghi OM (2005) Angew. Chem. Int Ed 44:4745–4749. https://doi.org/10.1002/ange.200462787

    Article  CAS  Google Scholar 

  78. Egli M, Sarkhel S (2007) Acc Chem Res 40:197–205. https://doi.org/10.1021/ar068174u

    Article  CAS  PubMed  Google Scholar 

  79. Xu F, Li G-M, Wang A-N, Han S-D, Pan J, Wang G-M (2021) Dalton Trans 50:18089–18096. https://doi.org/10.1039/D1DT02899E

    Article  CAS  PubMed  Google Scholar 

  80. Reimann CW, Block S, Perloff A (1966) Inorg Chem 5:1885–1889. https://doi.org/10.1021/ic50041a024

    Article  Google Scholar 

  81. Espinosa E, Molins E (1998) Lacomte C. Chem Phys Lett 285:170–173. https://doi.org/10.1016/S0009-2614(98)00036-0

    Article  CAS  Google Scholar 

  82. Hulswit RJG, de Haan CAM, Bosch BJ (2016) Chapter Two - Coronavirus Spike Protein and Tropism Changes. In: Ziebuhr J (ed) Advances in Virus Research. Academic Press, pp 29–57. https://doi.org/10.1016/bs.aivir.2016.08.004

    Chapter  Google Scholar 

  83. Babaeekhou L, Ghane M, Abbas-Mohammadi M (2021) In silico targeting SARS-CoV-2 spike protein and main protease by biochemical compounds. Biologia (Bratisl) 76:3547–3565. https://doi.org/10.1007/s11756-021-00881-z

    Article  CAS  PubMed  Google Scholar 

  84. Cui W, Yang K, Yang H (2020) Front Mol Biosci 7:616341. https://www.frontiersin.org/articles/10.3389/fmolb.2020.616341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Haribabu J, Balakrishnan N, Swaminathan S, Peter J, Gayathri D, Echeverria C, Bhuvanesh N, Karvembu R (2021) Inorg Chem Commun 134:109029–109039. https://doi.org/10.1016/j.inoche.2021.109029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

DMG is a member of the research career of CONICET. DMG thanks Secretaría de Ciencia, Arte e Innovación Tecnológica, SCAIT – UNT (Project D728), CONICET (PIP 215), and Agencia Nacional de Promoción Científica y Tecnológica, ANPCyT (PICT-serie A-02988) for financial support. The authors thank Dr. Antonio Frontera for the computational facility.

Author information

Authors and Affiliations

Authors

Contributions

Swah Mohd. Nashre-ul-Islam: conceptualization, software, writing—original draft, writing—review and editing. Kamala Kanta Borah: writing—review and editing. Füreya Elif Öztürkkan: software, writing—original draft. Pravin A. Dhakite: writing—review and editing. Muhammad Asam Raza: writing—review and editing. Diego M. Gil: software, writing—original draft.

Corresponding authors

Correspondence to Swah Mohd. Nashre-ul-Islam or Diego M. Gil.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12.3 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nashre-ul-Islam, S.M., Borah, K.K., Öztürkkan, F.E. et al. Crystal structure, molecular docking with SARS-CoV-2 receptors, and potential drug property of tetrahedral Zn(II) complexes. Struct Chem (2024). https://doi.org/10.1007/s11224-024-02294-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11224-024-02294-5

Keywords

Navigation