Skip to main content
Log in

A DFT study of the adsorption of vanillin on Al(111) surfaces

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The corrosion-inhibiting effect of vanillin molecule (VAN) and its protonated (\({{\text{VANH}}}^{+}\)) and deprotonated (\({{\text{VAND}}}^{-}\)) forms was investigated to evaluate the relationship between molecule structures and their associated efficiencies using density functional theory (DFT). The primary objective is to establish a comprehensive understanding of the relationship between molecular structures and their corrosion-inhibiting efficiencies. Global and local reactivity descriptors based on conceptual density functional theory (DFT), including the highest occupied molecular orbital energy (EHOMO), the lowest unoccupied molecular orbital energy (ELUMO), energy gap (ΔEgap), global hardness (η), global softness (σ), global electrophilicity (ω), electro-donating power (\({\upomega }^{-}\)), electro-accepting power (\({\upomega }^{+}\)), and Hirshfeld Fukui indices, have been investigated. The central aim of the present study is to elucidate the adsorption mechanism and provide a clear understanding of how these inhibitors interact with the Al(111) surface under different conditions. Molecular dynamics simulations in solid-state physics were employed to explore the adsorption mechanism of inhibitors in their neutral, protonated, and deprotonated species onto the Al(111) surface. The predicted adsorption suggests that the studied inhibitors for both parallel and perpendicular orientations decrease in the order \({{\text{VAND}}}^{-}\) > VAN > \({{\text{VANH}}}^{+}\). The VAN molecule can adsorb on the Al(111) surface in various orientations, both parallel and perpendicular, as well as using different sides of the molecule. The parallel adsorption of VAN and \({{\text{VAND}}}^{-}\) inhibitors on the Al(111) surface occurs primarily due to the creation of an Al‒O bond, while the \({{\text{VANH}}}^{+}\) form adheres to the Al(111) surface through the formation of an Al‒C bond. Furthermore, the adsorption of the neutral VAN on the Al(111) surface is not only via the oxygen atom but also through the carbon C7 atom of the carbonyl group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Guo Y, Frankel GS (2012) Characterization of trivalent chromium process coating on AA2024-T3. Surf Coat Technol 206:3895–3902. https://doi.org/10.1016/j.surfcoat.2012.03.046

    Article  CAS  Google Scholar 

  2. Lee M, Kim JU, Lee KJ et al (2015) Aluminum nanoarrays for plasmon-enhanced light harvesting. ACS Nano 9:6206–6213. https://doi.org/10.1021/acsnano.5b01541

    Article  CAS  PubMed  Google Scholar 

  3. Ba Z, Jia Y, Dong Q et al (2019) Effects of Zr ion implantation on surface mechanical properties and corrosion resistance of pure magnesium. J Mater Eng Perform 28:2543–2551. https://doi.org/10.1007/s11665-019-04055-6

    Article  CAS  Google Scholar 

  4. Drevet R, Aranda L, David N et al (2020) Pack cementation to prevent the oxidation of CoSb3 in air at 800 K. Surf Coat Technol 385:125401. https://doi.org/10.1016/j.surfcoat.2020.125401

    Article  CAS  Google Scholar 

  5. Buchnea D, Buchnea A (1974) Air pollution by aluminum compounds resulting from corrosion of air conditioners. Environ Sci Technol 8:752–755. https://doi.org/10.1021/es60093a007

    Article  CAS  Google Scholar 

  6. Davis JR (1999) Corrosion of aluminum and aluminum alloys. Editor ASM, Materials Park

  7. Fouda AS, El-Aal AA, Kandil AB (2006) The effect of some phthalimide derivatives on corrosion behavior of copper in nitric acid. Desalination 201:216–223. https://doi.org/10.1016/j.desal.2005.11.030

    Article  CAS  Google Scholar 

  8. Verma C, Ebenso EE, Quraishi MA, Rhee KY (2021) Phthalocyanine, naphthalocyanine and their derivatives as corrosion inhibitors: a review. J Mol Liq 334:116441. https://doi.org/10.1016/j.molliq.2021.116441

    Article  CAS  Google Scholar 

  9. Mahood HB, Sayer AH, Mekky AH, Khadom AA (2020) Performance of synthesized acetone based inhibitor on low carbon steel corrosion in 1 M HCl solution. Chemistry Africa 3:263–276. https://doi.org/10.1007/s42250-019-00104-8

    Article  CAS  Google Scholar 

  10. Fernandes CM, Pina VGSS, Alfaro CG et al (2022) Innovative characterization of original green vanillin-derived Schiff bases as corrosion inhibitors by a synergic approach based on electrochemistry, microstructure, and computational analyses. Colloids Surf, A 641:128540. https://doi.org/10.1016/j.colsurfa.2022.128540

    Article  CAS  Google Scholar 

  11. Zheludkevich ML, Serra R, Montemor MF et al (2005) Nanostructured sol–gel coatings doped with cerium nitrate as pre-treatments for AA2024-T3. Electrochim Acta 51:208–217. https://doi.org/10.1016/j.electacta.2005.04.021

    Article  CAS  Google Scholar 

  12. Amin MA, Hassan HH, Hazzazi OA, Qhatani MM (2008) Role of alloyed silicon and some inorganic inhibitors in the inhibition of meta-stable and stable pitting of Al in perchlorate solutions. J Appl Electrochem 38:1589–1598. https://doi.org/10.1007/s10800-008-9600-9

    Article  CAS  Google Scholar 

  13. Amuda MOH, Fashanu TA, Lawal I, Soremekun OO (2006) Collaborative influence of zinc oxide and triethylene amine on the corrosion behavior of mild steel in hydrogen cyanide environment

  14.  Al-Amiery AA, Yousif E, Isahak WNRW, Al-Azzawi WK (2023) A review of inorganic corrosion inhibitors: types, mechanisms, and applications. Tribol Ind 45:313–339. https://doi.org/10.24874/ti.1456.03.23.06

  15. Wang D, Tang X, Qiu Y et al (2005) A study of the film formation kinetics on zinc in different acidic corrosion inhibitor solutions by quartz crystal microbalance. Corros Sci 47:2157–2172. https://doi.org/10.1016/j.corsci.2004.10.003

    Article  CAS  Google Scholar 

  16. Atmani F, Lahem D, Poelman M et al (2013) Mild steel corrosion in chloride environment: effect of surface preparation and influence of inorganic inhibitors. Corros Eng, Sci Technol 48:9–18. https://doi.org/10.1179/1743278212Y.0000000037

    Article  CAS  Google Scholar 

  17. Shehnazdeep PB (2022) A study on effectiveness of inorganic and organic corrosion inhibitors on rebar corrosion in concrete: a review. Materials Today: Proceedings 65:1360–1366. https://doi.org/10.1016/j.matpr.2022.04.296

    Article  CAS  Google Scholar 

  18. Lv TM, Zhu SH, Guo L, Zhang ST (2015) Experimental and theoretical investigation of indole as a corrosion inhibitor for mild steel in sulfuric acid solution. Res Chem Intermed 41:7073–7093. https://doi.org/10.1007/s11164-014-1799-y

    Article  CAS  Google Scholar 

  19. Abdallah M, Altass HM, El-Sayed R et al (2021) Synthesis and estimation of some surface-active compounds derived from fused pyridine as corrosion inhibitors for aluminum in hydrochloric acid solutions. Prot Met Phys Chem Surf 57:811–819. https://doi.org/10.1134/S2070205121040031

    Article  CAS  Google Scholar 

  20. Xu C, Tan B, Zhang S, Li W (2022) Corrosion inhibition of copper in sulfuric acid by Leonurus japonicus Houtt. Extract as a green corrosion inhibitor: combination of experimental and theoretical research. J Taiwan Inst Chem Eng 139:104532. https://doi.org/10.1016/j.jtice.2022.104532

  21. Babashkina MG, Burkhanova TM, Safin DA (2022) In silico studies of 6-phenyl-3-(pyridin-2-yl)-1,2,4-triazine as a corrosion inhibitor for some important metals used in implants. J Chem Sci 134. https://doi.org/10.1007/s12039-022-02104-7

  22. Bazzi A, Abbiche K, Izzaouihda S et al (2021) Inhibition efficiency and adsorption mechanism of 4-aminobenzoic acid for copper corrosion in nitric acid medium: a combined experimental and theoretical investigation. Struct Chem 32:2183–2198. https://doi.org/10.1007/s11224-021-01784-0

    Article  CAS  Google Scholar 

  23. El Adnani Z, Mcharfi M, Sfaira M et al (2020) Reactivity and Fe complexation analysis of a series of quinoxaline derivatives used as steel corrosion inhibitors. Struct Chem 31:631–645. https://doi.org/10.1007/s11224-019-01435-5

    Article  CAS  Google Scholar 

  24. Ammouchi N, Allal H, Zouaoui E et al (2019) Extracts of Ruta chalepensis as green corrosion inhibitor for copper CDA 110 in 3% NaCl medium: experimental and theoretical studies. 11

  25. Sakki B, Said ME, Mezhoud B et al (2022) Experimental and theoretical study on corrosion inhibition of pyridinium salts derivatives for API 5L Gr.B steel in acidic media. J Adhes Sci Technol 36:2245–2268. https://doi.org/10.1080/01694243.2021.2008193

    Article  CAS  Google Scholar 

  26. Qadr HM, Mamand DM (2021) Molecular structure and density functional theory investigation corrosion inhibitors of some oxadiazoles. J Bio Tribo Corros 7:140. https://doi.org/10.1007/s40735-021-00566-9

    Article  Google Scholar 

  27. Civcir PÜ, Kurtay G, Sarıkavak K (2017) Experimental and theoretical investigation of new furan and thiophene derivatives containing oxazole, isoxazole, or isothiazole subunits. Struct Chem 28:773–790. https://doi.org/10.1007/s11224-016-0863-1

    Article  CAS  Google Scholar 

  28. Abdallah M, Al-abdali FH, Kamar EM, et al (2020) Corrosion inhibition of aluminum in 1.0M HCl solution by some nonionic surfactant compounds containing five membered heterocyclic moiety. Chemical Data Collections 28:100407. https://doi.org/10.1016/j.cdc.2020.100407

  29. Quraishi MA, Chauhan DS, Saji VS (2021) Heterocyclic biomolecules as green corrosion inhibitors. J Mol Liq 341:117265. https://doi.org/10.1016/j.molliq.2021.117265

    Article  CAS  Google Scholar 

  30. Birar VC, Zaid G, Blagg BSJ (2021) Reaction between harmaline and vanillin to produce dimeric scaffolds that exhibit anti-proliferative activity. Tetrahedron Lett 73:153139. https://doi.org/10.1016/j.tetlet.2021.153139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tai A, Sawano T, Yazama F, Ito H (2011) Evaluation of antioxidant activity of vanillin by using multiple antioxidant assays. Biochim Biophys Acta (BBA) - General Subjects 1810:170–177. https://doi.org/10.1016/j.bbagen.2010.11.004

  32. Méndez-Líter JA, Tundidor I, Nieto-Domínguez M et al (2019) Transglycosylation products generated by Talaromyces amestolkiae GH3 β-glucosidases: effect of hydroxytyrosol, vanillin and its glucosides on breast cancer cells. Microb Cell Factories 18. https://doi.org/10.1186/s12934-019-1147-4

  33. Li X, Deng S, Fu H, Mu G (2008) Synergism between rare earth cerium (IV) ion and vanillin on the corrosion of cold rolled steel in 1.0M HCl solution. Corros Sci 50:3599–3609. https://doi.org/10.1016/j.corsci.2008.09.029

    Article  CAS  Google Scholar 

  34. Negm NA, Tawfik SM, Badr EA et al (2015) Evaluation of some nonionic surfactants derived from vanillin as corrosion inhibitors for carbon steel during drilling processes. J Surfactants Deterg 18:413–420. https://doi.org/10.1007/s11743-015-1672-z

    Article  CAS  Google Scholar 

  35. Emregül KC, Hayvalı M (2004) Studies on the effect of vanillin and protocatechualdehyde on the corrosion of steel in hydrochloric acid. Mater Chem Phys 83:209–216. https://doi.org/10.1016/j.matchemphys.2003.08.030

    Article  CAS  Google Scholar 

  36. Shaban SM, Aiad I, El-Sukkary MM et al (2015) Inhibition of mild steel corrosion in acidic medium by vanillin cationic surfactants. J Mol Liq 203:20–28. https://doi.org/10.1016/j.molliq.2014.12.033

    Article  CAS  Google Scholar 

  37. Mo S, Li LJ, Luo HQ, Li NB (2017) An example of green copper corrosion inhibitors derived from flavor and medicine: vanillin and isoniazid. J Mol Liq 242:822–830. https://doi.org/10.1016/j.molliq.2017.07.081

    Article  CAS  Google Scholar 

  38. El-Etre AY (2001) Inhibition of acid corrosion of aluminum using vanillin. Corros Sci 43:1031–1039. https://doi.org/10.1016/S0010-938X(00)00127-X

    Article  CAS  Google Scholar 

  39. Rosliza R, Nora’aini A, Wan Nik WB (2010) Study on the effect of vanillin on the corrosion inhibition of aluminum alloy. J Appl Electrochem 40:833–840. https://doi.org/10.1007/s10800-009-0066-1

    Article  CAS  Google Scholar 

  40. Shahidi M, Mansouri R, Bahrami MJ, Hosseini SMA (2015) Electrochemical and quantum chemical study of vanillin as a green corrosion inhibitor for AA6061 in NaCl solution. Journal of Physical & Theoretical Chemistry 11:227–238

    Google Scholar 

  41. Allal H, Belhocine Y, Zouaoui E (2018) Computational study of some thiophene derivatives as aluminium corrosion inhibitors. J Mol Liq 265:668–678. https://doi.org/10.1016/j.molliq.2018.05.099

    Article  CAS  Google Scholar 

  42. Damous M, Allal H, Belhocine Y et al (2021) Quantum chemical exploration on the inhibition performance of indole and some of its derivatives against copper corrosion. J Mol Liq 340:117136. https://doi.org/10.1016/j.molliq.2021.117136

    Article  CAS  Google Scholar 

  43. Said M.E, Allal H, Mezhoud B, Bouchouit M, Chibani A, Bouraiou A (2023) Experimental and theoretical evaluation of (iso)quinolinium bromide derivatives as corrosion inhibitors of steel E24 in 0.5 M H2SO solution. Int J Corros Scale Inhib 11. https://doi.org/10.17675/2305-6894-2023-12-2-16

  44. Bousba S, Allal H, Damous M, Maza S (2023) Computational DFT analysis and molecular modeling on imidazole derivatives used as corrosion inhibitors for aluminum in acidic media. Comput Theor Chem 1225:114168. https://doi.org/10.1016/j.comptc.2023.114168

    Article  CAS  Google Scholar 

  45. Mandal S, Zamindar S, Sarkar S et al (2023) Quantum chemical and molecular dynamics simulation approach to investigate adsorption behaviour of organic azo dyes on TiO2 and ZnO surfaces. J Adhes Sci Technol 37:1649–1665. https://doi.org/10.1080/01694243.2022.2086199

    Article  CAS  Google Scholar 

  46. Ibrahim MAA, Moussa NAM, Mahmoud AHM et al (2023) On the efficiency of barbituric acid and its thio derivatives as aluminium corrosion inhibitors: a computational study. J Mol Liq 383:122155. https://doi.org/10.1016/j.molliq.2023.122155

    Article  CAS  Google Scholar 

  47. Liu Q, Liu J, Wang J, Chong Y (2023) Corrosion inhibition effect of betaine type quaternary ammonium salt on AA2024-T3 in 0.01 mol·L−1 NaOH: experimental and theoretical research. J Mol Struct 1274:134395. https://doi.org/10.1016/j.molstruc.2022.134395

  48. Bursch M, Mewes J, Hansen A, Grimme S (2022) Best‐practice DFT protocols for basic molecular computational chemistry. Angewandte Chemie International Edition 61. https://doi.org/10.1002/anie.202205735

  49. Neese F (2012) The ORCA program system. WIREs Computational Molecular Science 2:73–78. https://doi.org/10.1002/wcms.81

    Article  CAS  Google Scholar 

  50. Kohn W, Becke AD, Parr RG (1996) Density functional theory of electronic structure. J Phys Chem 100:12974–12980. https://doi.org/10.1021/jp960669l

    Article  CAS  Google Scholar 

  51. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297. https://doi.org/10.1039/b508541a

    Article  CAS  PubMed  Google Scholar 

  52. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396. https://doi.org/10.1021/jp810292n

    Article  CAS  PubMed  Google Scholar 

  53. Hanwell MD, Curtis DE, Lonie DC et al (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminformatics 4. https://doi.org/10.1186/1758-2946-4-17

  54. Knizia G (2023) IboView-a program for chemical analysis. http://www.iboview.org. Accessed 16 January 2023

  55. Nikolaienko TY, Bulavin LA, Hovorun DM (2014) JANPA: an open source cross-platform implementation of the natural population analysis on the Java platform. Comput Theor Chem 1050:15–22. https://doi.org/10.1016/j.comptc.2014.10.002

    Article  CAS  Google Scholar 

  56. Goddard TD, Huang CC, Ferrin TE (2007) Visualizing density maps with UCSF Chimera. J Struct Biol 157:281–287. https://doi.org/10.1016/j.jsb.2006.06.010

    Article  CAS  PubMed  Google Scholar 

  57. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  58. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  59. Geerlings P, Proft FD, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1874. https://doi.org/10.1021/cr990029p

  60. Balawender R, Komorowski L (1998) Atomic Fukui function indices and local softness ab initio. J Chem Phys 109:5203–5211. https://doi.org/10.1063/1.477137

    Article  CAS  Google Scholar 

  61. Fuentealba P, Pérez P, Contreras R (2000) On the condensed Fukui function. J Chem Phys 113:2544–2551. https://doi.org/10.1063/1.1305879

    Article  CAS  Google Scholar 

  62. Davidson ER, Chakravorty S (1992) A test of the Hirshfeld definition of atomic charges and moments. Theoret Chim Acta 83:319–330. https://doi.org/10.1007/BF01113058

    Article  CAS  Google Scholar 

  63. Giannozzi P, Baroni S, Bonini N et al (2009) Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys: Condens Matter 21:395502. https://doi.org/10.1088/0953-8984/21/39/395502

    Article  PubMed  Google Scholar 

  64. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192. https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  65. Bengtsson L (1999) Dipole correction for surface supercell calculations. Phys Rev B 59:12301–12304. https://doi.org/10.1103/PhysRevB.59.12301

    Article  CAS  Google Scholar 

  66. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799. https://doi.org/10.1002/jcc.20495

    Article  CAS  PubMed  Google Scholar 

  67. Camacho-Mendoza RL, Aquino-Torres E, Cruz-Borbolla J et al (2014) DFT analysis: Fe4 cluster and Fe(110) surface interaction studies with pyrrole, furan, thiophene, and selenophene molecules. Struct Chem 25:115–126. https://doi.org/10.1007/s11224-013-0254-9

    Article  CAS  Google Scholar 

  68. Li L, Dong C, Liu L et al (2014) Preparation and characterization of pH-controlled-release intelligent corrosion inhibitor. Mater Lett 116:318–321. https://doi.org/10.1016/j.matlet.2013.11.003

    Article  CAS  Google Scholar 

  69. Galvão TLP, Kuznetsova A, Gomes JRB et al (2016) A computational UV–Vis spectroscopic study of the chemical speciation of 2-mercaptobenzothiazole corrosion inhibitor in aqueous solution. Theor Chem Acc 135. https://doi.org/10.1007/s00214-016-1839-3

  70. Mohamad Sidik MS, Abu Bakar MH, Allal H (2022) Adsorption of benzene-1,4-diol, 3-methyl-1,2-cyclopentanedione and 2,6-dimethoxyphenol on aluminium (1 1 1) plane using density functional theory calculations. Chem Phys 560:111592. https://doi.org/10.1016/j.chemphys.2022.111592

    Article  CAS  Google Scholar 

  71. Gázquez JL, Cedillo A, Vela A (2007) Electrodonating and electroaccepting powers. J Phys Chem A 111:1966–1970. https://doi.org/10.1021/jp065459f

    Article  CAS  PubMed  Google Scholar 

  72. Chattaraj PK, Chakraborty A, Giri S (2009) Net electrophilicity. J Phys Chem A 113:10068–10074. https://doi.org/10.1021/jp904674x

    Article  CAS  PubMed  Google Scholar 

  73. Cordero B, Gómez V, Platero-Prats AE et al (2008) Covalent radii revisited. Dalton Trans 2832. https://doi.org/10.1039/b801115j

  74. Batsanov SS (2001) Van der Waals radii of elements. Inorg Mater 37:871–885. https://doi.org/10.1023/A:1011625728803

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

F.B., investigation, ORCA software, writing, and prepared Figs.1, 2, 3, and 4. H.A., administration of projects, composing, reviewing, and editing, overseeing, and validating. M.T., investigation, ORCA software, and prepared Figs. 5, 6, 7, and 8. M.D., investigation and Quantum Espresso software. S.M., investigation and Quantum Espresso software. A.B., investigation and reviewed the manuscript. S.B., writing and reviewed the manuscript. E.Z. reviewed the manuscript.

Corresponding author

Correspondence to Hamza Allal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouhadouache, F., Allal, H., Taier, M. et al. A DFT study of the adsorption of vanillin on Al(111) surfaces. Struct Chem (2024). https://doi.org/10.1007/s11224-023-02277-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11224-023-02277-y

Keywords

Navigation