Skip to main content
Log in

A DFT study of H2S adsorption and sensing on Ti, V, Cr and Sc doped graphene surfaces

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Finding cost-effective and sustainable methods for the removal of hydrogen sulfide (H2S), a highly toxic gas released as a byproduct in many industrial activities, is crucial for environmental health. In this study, the adsorption and electronic sensor properties of Ti, V, Cr and Sc doped graphene nanosheets (GN) for H2S molecule have been investigated using Density Functional Theory (DFT) method. The WB97XD method with 6-31G(d,p)/LanL2DZ basis sets have been utilized in DFT calculations. The charge distribution indicates that the charge transfer occurred between metal doped graphenes and H2S. DFT calculations of H2S molecule adsorption on Ti, V, Cr and Sc doped graphenes demonstrate that the ability to adsorb H2S molecule. The obtained adsorption energy (∆E) values vary in the range of -54.4 to -71.0 kJ/mol. Furthermore, the electrical conductivity of the Cr doped graphene nanosheet (Cr-GN) changed due to the change in the HOMO–LUMO gap (∆Eg = 24.8 kJ/mol). This result indicates that the Cr-GN structure is a potential candidate as an electronic sensor for H2S molecule at room temperature. Through methods like DFT, which are cost-effective and highly compatible with experimental results, predicting suitable adsorbents, understanding their properties, and enhancing them are expected to make substantial contributions to the industrial-scale production of these materials in terms of cost and accuracy in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

There is no data availability.

References

  1. Zeng H, Wang L, Zhang D, Yan P, Nie J, Sharma VK, Wang C (2019) Highly efficient and selective removal of mercury ions using hyperbranched polyethylenimine functionalized carboxymethyl chitosan composite adsorbent. Chem Eng J. https://doi.org/10.1016/j.cej.2018.10.001

    Article  Google Scholar 

  2. Wang S, Nam H, Lee D, Nam H (2022) H2S gas adsorption study using copper impregnated on KOH activated carbon from coffee residue for indoor air purification. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2022.108797

    Article  PubMed  PubMed Central  Google Scholar 

  3. Salih E, Ayesh AI (2020) DFT investigation of H2S adsorption on graphenenanosheets and nanoribbons: Comparative study. Superlattices Microstruct. https://doi.org/10.1016/j.spmi.2020.106650

    Article  Google Scholar 

  4. Ozekmekci M, Salkic G, Fellah MF (2015) Use of zeolites for the removal of H2S: A mini-review. Fuel Process Technol. https://doi.org/10.1016/j.fuproc.2015.08.015

    Article  Google Scholar 

  5. Agbroko OW, Piler K, Benson TJ (2017) A comprehensive review of H2S scavenger technologies from oil and gas streams. ChemBioEng Rev. https://doi.org/10.1002/cben.201600026

    Article  Google Scholar 

  6. Nam H, Wang S, Jeong HR (2018) TMA and H2S gas removals using metal loaded on rice husk activated carbon for indoor air purification. Fuel. https://doi.org/10.1016/j.fuel.2017.10.089

    Article  Google Scholar 

  7. Shah MS, Tsapatsis M, Siepmann JI (2017) Hydrogen sulfide capture: From absorption in polar liquids to oxide, zeolite, and metal-organic framework adsorbents and membranes. Chem Rev. https://doi.org/10.1021/acs.chemrev.7b00095

    Article  PubMed  Google Scholar 

  8. Habeeb O, Ramesh K, Ali GA, Yunus R, Thanusha T, Olalere O (2016) Modeling and optimization for H2S adsorption from wastewater using coconut shell based activated carbon. Aust J Basic Appl Sci 10:136–147

    CAS  Google Scholar 

  9. Srivastava R, Suman H, Shrivastava S, Srivastava A (2019) DFT Analysis of Pristine and functionalized Zigzag CNT: A case of H2S sensing. Chem Phys Lett. https://doi.org/10.1016/j.cplett.2019.07.003

    Article  Google Scholar 

  10. El-Sherbiny I, Salih E (2018) In: Kanchi S, Ahmed S (ed) Green synthesis of metallic nanoparticles using biopolymers and plant extracts: Synthesis, characterization and their applications. Wiley, New York. https://doi.org/10.1002/9781119418900.ch10

  11. Dresselhaus M, Terrones M (2013) Carbon-based nanomaterials from a historical perspective. Proc IEEE. https://doi.org/10.1109/JPROC.2013.2261271

    Article  Google Scholar 

  12. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature. https://doi.org/10.1038/363603a0

    Article  Google Scholar 

  13. Baptista F, Belhout S, Giordani S, Quinn S (2015) Recent developments in carbon nanomaterial sensors. Chem Soc Rev. https://doi.org/10.1039/C4CS00379A

    Article  PubMed  Google Scholar 

  14. Lan G, Tang L, Dong J, Nong J, Luo P, Li X, Li Z, Zhang Y, Dai Y, Wang W, Shi H, Wei W (2023) Enhanced asymmetric light-plasmon coupling in graphene nanoribbons for high-efficiency transmissive infrared modulation. Laser Photonics Rev. https://doi.org/10.1002/lpor.202300469

    Article  Google Scholar 

  15. Tang T, Zhou M, Lv J, Cheng H, Wang H, Qin D, Hu G, Liu X (2022) Sensitive and selective electrochemical determination of uric acid in urine based on ultrasmall iron oxide nanoparticles decorated urchin-like nitrogen-doped carbon. Colloids Surf B. https://doi.org/10.1016/j.colsurfb.2022.112538

    Article  Google Scholar 

  16. Mubeen S, Zhang T, Chartuprayoon N, Rheem Y, Mulchandani A, Myung NV, Deshusses MA (2010) Sensitive detection of H2S using gold nanoparticle decorated single-walled carbon nanotubes. Anal Chem. https://doi.org/10.1021/ac901871d

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tsai JH, Jeng FT, Chiang HL (2001) Removal of H2S from exhaust gas by use of alkaline activated carbon. Adsorption. https://doi.org/10.1023/A:1013142405297

    Article  Google Scholar 

  18. Bandosz TJ (2002) On the adsorption/oxidation of hydrogen sulfide on activated carbons at ambient temperatures. J Colloid Interface Sci. https://doi.org/10.1006/jcis.2001.7952

    Article  PubMed  Google Scholar 

  19. Yan R, Liang DT, Tsen L, Tay JH (2002) Kinetics and mechanisms of H2S adsorption by alkaline activated carbon. Environ Sci Technol. https://doi.org/10.1021/es0205840

    Article  PubMed  Google Scholar 

  20. Kaliva AN, Smith JW (1983) Oxidation of low concentrations of hydrogen sulfide by air on a fixed activated carbon bed. Can J Chem Eng. https://doi.org/10.1002/cjce.5450610210

    Article  Google Scholar 

  21. Águila JEC, Cocoletzi HH, Cocoletzi GH (2013) A theoretical analysis of the role of defects in the adsorption of hydrogen sulfide on graphene. AIP Adv. https://doi.org/10.1063/1.4794953

    Article  Google Scholar 

  22. Wang S, Sun H, Ang HM, Tadé MO (2013) Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials. Chem Eng J. https://doi.org/10.1016/j.cej.2013.04.070

    Article  Google Scholar 

  23. Ou L, Song B, Liang H, Liu J, Feng X, Deng B, Sun T, Shao L (2016) Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms. Part Fibre Toxicol. https://doi.org/10.1186/s12989-016-0168-y

    Article  PubMed  PubMed Central  Google Scholar 

  24. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater. https://doi.org/10.1038/nmat1849

    Article  PubMed  Google Scholar 

  25. Dutta S, Manna A, Pati S (2009) Intrinsic half-metallicity in modified graphene nanoribbons. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.102.096601

    Article  PubMed  Google Scholar 

  26. Ren H, Li Q, Luo Y, Yang J (2009) Graphene nanoribbon as a negative differential resistance device. Appl Phys Lett doi 10(1063/1):3126451

    Google Scholar 

  27. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol. https://doi.org/10.1038/nnano.2008.215

    Article  PubMed  Google Scholar 

  28. Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H (2008) Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol. https://doi.org/10.1038/nnano.2008.210

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tang Y, Yang Z, Dai X, Ma D, Fu Z (2013) Formation, stabilities, and electronic and catalytic performance of platinum catalyst supported on non-metal-doped graphene. J Phys Chem C. https://doi.org/10.1021/jp400202e

    Article  Google Scholar 

  30. Ganji M, Sharifi N, Ahangari M (2014) Adsorption of H2S molecules on non-carbonic and decorated carbonic graphenes: A van der Waals density functional study. Comput Mater Sci. https://doi.org/10.1016/j.commatsci.2014.05.035

    Article  Google Scholar 

  31. Zhang YH, Han LF, Xiao YH, Jia DZ, Guo ZH, Li F (2013) Understanding dopant and defect effect on H2S sensing performances of graphene: A first-principles study. Comput Mater Sci. https://doi.org/10.1016/j.commatsci.2012.11.048

    Article  Google Scholar 

  32. Ganji MD, Sharifi N, Ardjmand M, Ahangari MG (2012) Pt-decorated graphene as superior media for H2S adsorption: a first-principles study. App Surf Sci. https://doi.org/10.1016/j.apsusc.2012.08.083

    Article  Google Scholar 

  33. Zhang HP, Luo XG, Song HT, Lin XY, Lu X, Tang Y (2014) DFT study of adsorption and dissociation behavior of H2S on Fe-doped graphene. App Surf Sci. https://doi.org/10.1016/j.apsusc.2014.08.141

    Article  Google Scholar 

  34. Borisova D, Antonov V, Proykova A (2013) Hydrogen sulfide adsorption on a defective graphene. Int J Quantum Chem. https://doi.org/10.1002/qua.24077

    Article  Google Scholar 

  35. Hegde VI, Shirodkar SN, Tit N, Waghmare UV, Yamani ZH (2014) First principles analysis of graphene and its ability to maintain long-ranged interaction with H2S. Surf Sci. https://doi.org/10.1016/j.susc.2013.11.015

    Article  Google Scholar 

  36. Mohammadi-Manesh E, Vaezzadeh M, Saeidi M (2015) Cu- and CuO-decorated graphene as a nanosensor for H2S detection at room temperature. Surf Sci. https://doi.org/10.1016/j.susc.2015.02.002

    Article  Google Scholar 

  37. Gao X, Zhou Q, Wang J, Xu L, Zeng W (2020) Performance of intrinsic and modified graphene for the adsorption of H2S and CH4: a DFT study. Nanomaterials. https://doi.org/10.3390/nano10020299

    Article  PubMed  PubMed Central  Google Scholar 

  38. Salmankhani A, Karami Z, Mashhadzadeh AH, Ganjali MR, Vatanpour V, Esmaeili A, Habibzadeh S, Saeb MR, Fierro V, Celzard A (2020) New insights into H2S adsorption on graphene and graphene-like structures: a comparative DFT study. C. https://doi.org/10.3390/c6040074

    Article  Google Scholar 

  39. Bayatsarmadi B, Zheng Y, Vasileff A, Qiao SZ (2017) Recent advances in atomic metal doping of carbon-based nanomaterials for energy conversion. Small. https://doi.org/10.1002/smll.201700191

    Article  PubMed  Google Scholar 

  40. Qiu HJ, Ito Y, Cong W, Tan Y, Liu P, Hirata A, Fujita T, Tang Z, Chen M (2015) Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production. Angew Chem Int Ed Engl. https://doi.org/10.1002/anie.201507381

    Article  PubMed  Google Scholar 

  41. Sun H, Yang L, Wu H, Zhao L (2023) Effects of element doping on the structure and properties of diamond-like carbon films: a review. Lubricants. https://doi.org/10.3390/lubricants11040186

    Article  Google Scholar 

  42. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G (2015) Gaussian 09, Revision D. 01; Gaussian, Inc: Wallingford, CT

  43. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev. https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  44. Chai JD, Head-Gordon M (2008) Systematic optimization of long-range corrected hybrid density functionals. J Chem Phys doi 10(1063/1):2834918

    Google Scholar 

  45. Tsuneda T, Hirao K (2014) Long-range correction for density functional theory. Wiley Interdiscip Rev: Comput Mol Sci. https://doi.org/10.1002/wcms.1178

    Article  Google Scholar 

  46. Natan A, Kronik L, Shapira Y (2006) Computing surface dipoles and potentials of self-assembled monolayers from first principles. App Surf Sci. https://doi.org/10.1016/j.apsusc.2006.03.052

    Article  Google Scholar 

  47. Kumar S, Sharma S, Karmaker R, Sinha D (2021) DFT study on the structural, optical and electronic properties of platinum group doped graphene. Mater Today Commun. https://doi.org/10.1016/j.mtcomm.2020.101755

    Article  Google Scholar 

  48. Wong MW (1996) Vibrational frequency prediction using density functional theory. Chem Phys Lett. https://doi.org/10.1016/0009-2614(96)00483-6

    Article  Google Scholar 

  49. Lu T, Chen F (2012) Multiwfn: A multifunctional wavefunction analyzer. J Comput Chem. https://doi.org/10.1002/jcc.22885

    Article  PubMed  Google Scholar 

  50. Kumar N, Sharma M, Sharma JD, Ahluwalia PK (2015) Study of magnetism in nano structures of graphene and functionalized graphene: a first principle study. Indian J Phys. https://doi.org/10.1007/s12648-014-0526-2

    Article  Google Scholar 

  51. Nagarajan V, Nivedhana R, Chandiramouli R (2023) Nucleobases adsorption studies on chair graphane nanosheets – A DFT outlook. Inorg Chem Commun. https://doi.org/10.1016/j.inoche.2023.110683

    Article  Google Scholar 

  52. Bokhimi X (2019) Atomic and electronic properties of a 155 H2S cluster under pressure. ACS Omega. https://doi.org/10.1021/acsomega.9b00705

    Article  PubMed  PubMed Central  Google Scholar 

  53. Cook RL, De Lucia FC, Helminger P (1975) Molecular force field and structure of hydrogen sulfide: recent microwave results. J Mol Struct. https://doi.org/10.1016/0022-2860(75)80094-9

    Article  Google Scholar 

  54. Yousefian Z, Ghasemy E, Askarieh M, Rashidi A (2019) Theoretical studies on B, N, P, S, and Si doped fullerenes toward H2S sensing and adsorption. Phys E. https://doi.org/10.1016/j.physe.2019.113626

    Article  Google Scholar 

  55. Ayesh AI (2022) H2S and SO2 adsorption on Cu doped MoSe2: DFT investigation. Phys Lett A. https://doi.org/10.1016/j.physleta.2021.127798

    Article  Google Scholar 

  56. Salih E, Ayesh AI (2021) Computational study of metal doped graphene nanoribbon as a potential platform for detection of H2S. Mater Today Commun. https://doi.org/10.1016/j.mtcomm.2020.101823

    Article  Google Scholar 

  57. Bo Z, Guo X, Wei X, Yang H, Yan J, Cen K (2019) Density functional theory calculations of NO2 and H2S adsorption on the group 10 transition metal (Ni, Pd and Pt) decorated graphene. Phys E. https://doi.org/10.1016/j.physe.2019.01.012

    Article  Google Scholar 

  58. Aghaei SM, Monshi MM, Calizo I (2016) A theoretical study of gas adsorption on silicene nanoribbons and its application in a highly sensitive molecule sensor. RSC Adv. https://doi.org/10.1039/C6RA21293J

    Article  Google Scholar 

  59. Faye O, Raj A, Mittal V, Beye AC (2016) H2S adsorption on graphene in the presence of sulfur: A density functional theory study. Comput Mater Sci. https://doi.org/10.1016/j.commatsci.2016.01.034

    Article  Google Scholar 

  60. Wei H, Gui Y, Kang J, Wang W, Tang C (2018) A DFT study on the adsorption of H2S and SO2 on Ni doped MoS2 monolayer. Nanomaterials. https://doi.org/10.3390/nano8090646

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhang X, Yu L, Wu X, Hu W (2015) Experimental sensing and density functional theory study of H2S and SOF2 adsorption on Au-modified graphene. Adv Sci. https://doi.org/10.1002/advs.201500101

    Article  Google Scholar 

  62. Lin C, Qin W, Dong C (2016) H2S adsorption and decomposition on the gradually reduced α-Fe2O3(001) surface: A DFT study. App Surf Sci. https://doi.org/10.1016/j.apsusc.2016.06.104

    Article  Google Scholar 

  63. Peng X, Liu D, Zhao F, Tang C (2022) Gas sensing properties of Mg-doped graphene for H2S, SO2, SOF2, and SO2F2 based on DFT. Int J Quantum Chem. https://doi.org/10.1002/qua.26989

    Article  Google Scholar 

  64. Gecim G, Ozekmekci M (2021) A density functional theory study of molecular H2S adsorption on (4,0) SWCNT doped with Ge, Ga and B. Surf Sci. https://doi.org/10.1016/j.susc.2021.121876

    Article  Google Scholar 

  65. Khodadadi Z (2018) Evaluation of H2S sensing characteristics of metals–doped graphene and metals-decorated graphene: Insights from DFT study. Phys E. https://doi.org/10.1016/j.physe.2018.02.022

    Article  Google Scholar 

  66. Fellah MF (2016) Adsorption of hydrogen sulfide as initial step of H2S removal: A DFT study on metal exchanged ZSM-12 clusters. Fuel Process Technol. https://doi.org/10.1016/j.fuproc.2016.01.003

    Article  Google Scholar 

  67. Fellah MF (2019) Pt doped (8,0) single wall carbon nanotube as hydrogen sensor: A density functional theory study. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2019.08.169

    Article  Google Scholar 

  68. Ahmadi A, Hadipour NL, Kamfiroozi M, Bagheri Z (2012) Theoretical study of aluminum nitride nanotubes for chemical sensing of formaldehyde. Sens Actuators B. https://doi.org/10.1016/j.snb.2011.12.001

    Article  Google Scholar 

  69. Hadipour NL, Peyghan AA, Soleymanabadi H (2015) Theoretical study on the Al-doped ZnO nanoclusters for CO chemical sensors. J Phys Chem C. https://doi.org/10.1021/jp513019z

    Article  Google Scholar 

  70. Peyghan AA, Hadipour NL, Bagheri Z (2013) Effects of Al doping and double-antisite defect on the adsorption of HCN on a BC2N nanotube: Density functional theory studies. J Phys Chem C. https://doi.org/10.1021/jp312503h

    Article  Google Scholar 

  71. Eslami E, Vahabi V, Peyghan AA (2016) Sensing properties of BN nanotube toward carcinogenic 4-chloroaniline: A computational study. Phys E. https://doi.org/10.1016/j.physe.2015.09.043

    Article  Google Scholar 

  72. Khan MS, Khan MS (2012) Comparative theoretical study of iron and magnesium incorporated porphyrin induced carbon nanotubes and their interaction with hydrogen molecule. Phys E. https://doi.org/10.1016/j.physe.2012.05.010

    Article  Google Scholar 

  73. Utsu PM, Gber TE, Nwosa DO, Nwagu AD, Benjamin I, Ikot IJ, Eno EA, Offiong OE, Adeyinka AS, Louis H (2023) Modeling of anthranilhydrazide (HL1) salicylhydrazone and its copper complexes Cu(I) and Cu(II) as a potential antimicrobial and antituberculosis therapeutic candidate. Polycyclic Aromat Compd. https://doi.org/10.1080/10406638.2023.2186444

    Article  Google Scholar 

  74. Sjoberg P, Politzer P (1990) Use of the electrostatic potential at the molecular surface to interpret and predict nucleophilic processes. J Phys Chem. https://doi.org/10.1021/j100373a017

    Article  Google Scholar 

  75. Baydir E, Altun A, Fellah MF (2022) Molecular adsorption of silane on Ge, Ga and Al-doped CNT structures: a density functional theory study. Prot Met Phys Chem Surf. https://doi.org/10.1134/S2070205122050033

    Article  Google Scholar 

  76. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc. https://doi.org/10.1021/ja100936w

    Article  PubMed  PubMed Central  Google Scholar 

  77. Peng S, Cho K, Qi P, Dai H (2004) Ab initio study of CNT NO2 gas sensor. Chem Phys Lett. https://doi.org/10.1016/j.cplett.2004.02.026

    Article  Google Scholar 

Download references

Acknowledgements

The numerical calculations reported in this paper were partially performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Methodology, Software, Writing—Original Draft were performed by [Ömer Faruk TUNALI] and [Numan YUKSEL]. Validation, Formal analysis, Writing—Review & Editing, Supervision were performed by [Gökhan GECE]. Conceptualization, Validation, Formal analysis, Writing—Review & Editing, Supervision were performed by [Mehmet Ferdi FELLAH]. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Numan Yuksel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2545 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tunalı, Ö.F., Yuksel, N., Gece, G. et al. A DFT study of H2S adsorption and sensing on Ti, V, Cr and Sc doped graphene surfaces. Struct Chem 35, 759–775 (2024). https://doi.org/10.1007/s11224-023-02265-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-023-02265-2

Keywords

Navigation