Skip to main content
Log in

Study of magnetism in nano structures of graphene and functionalized graphene: a first principle study

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

A first principle calculation has been performed to explore the magnetism in nano structures of graphene due to vacancies in carbon lattice and functionalized (hydrogenated) graphene due to vacancies in hydrogen lattice. Nano structures containing 50C atoms (5 × 5 × 1 super cell) have been considered. Using the method of numeric localized atomic orbitals, pseudo potentials and density functional theory, spin polarised electron density of states have been calculated and C–C bond lengths, C–C–C and H–C–C bond angles, formation energy and magnetic moment have been obtained. It has been found that due to defects (vacancies) in carbon lattice of pristine graphene, nano structure develops magnetic moment, which varies with the size of defect. A nano structure with four contiguous vacancies is found to have a magnetic moment of 2.0 µB. The nano structures of hydrogenated graphene also develop magnetic moment due to vacancies in hydrogen lattice , which varies with number and position of vacancies. A nano structure with half hydrogenated graphene obtained by removing all the hydrogen atoms from one side of graphane, (alternate vacancies in hydrogen lattice 50C25H atoms, graphone) is found to develop a large magnetic moment of 25.0 µB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K S Novoselov et al. Science 306 666 (2004)

    Article  ADS  Google Scholar 

  2. D S L Abergel, V Apalkov, J Berashevich, V Ziegler and T Chakraborty Adv. Phys. 59 261 (2010)

    Article  ADS  Google Scholar 

  3. S Mitra et al. Indian J. Phys. 85 649 (2011)

    Article  ADS  Google Scholar 

  4. R K Pandyan, S Seenithurai and M Mahendran Indian J. Phys. 86 677 (2012)

  5. C Bai, J Wang, G Yang and Y Yang Indian J. Phys. 87 133 (2013)

  6. H Goudarzi, N Aghamirli and S Anvarian Indian J. Phys. 87 1105 (2013)

    Google Scholar 

  7. R Majidi and A R Karami Indian J. Phys. 88 483 (2014)

    Article  ADS  Google Scholar 

  8. J O Sofo, A S Chaudhari and G D Barber Phys. Rev. B. 75 153401 (2007)

    Article  Google Scholar 

  9. D C Elias et al. Science 323 610 (2009)

    Article  ADS  Google Scholar 

  10. J Zhou, Q Wang, Q Sun, X S Chen, Y Kawazoe and P Jena Nano Lett. 9 3867 (2009)

    Article  Google Scholar 

  11. H Lee, Y W Son, N Park, S Han and J Yu Phys. Rev. B 72 174431 (2005)

    Article  ADS  Google Scholar 

  12. Y Zhang, S Talapatra, S Kar, R Vajtai, S K Nayak and P M Ajayan Phys. Rev. Lett. 99 107201 (2007)

    Article  ADS  Google Scholar 

  13. Y Wang et al. Nano Lett. 9 220 (2009)

    Article  ADS  Google Scholar 

  14. J J Palacios, J Fernández-Rossier and L Brey Phys. Rev. B 77 195428 (2008)

    Article  ADS  Google Scholar 

  15. J Berashevich and T Chakraborty Nanotechnology 21 355201 (2010)

    Article  Google Scholar 

  16. NM R Peres, M A N Araújo and D Bozi Phys. Rev. B 70 195122 (2004)

    Article  ADS  Google Scholar 

  17. D W Boukhvalov, M I Katsnelson and A I Lichtenstein Phys. Rev. B 77 035427 (2008)

    Article  ADS  Google Scholar 

  18. H Şahin, C Ataca and S Ciraci Appl. Phys. Lett. 95 222510 (2009)

    Article  ADS  Google Scholar 

  19. N Kumar, J D Sharma and P K Ahluwalia Emerging Paradigms of Nanotechnology (IN:Pearson) (ed.) R C Sobti et al. p 806 (2013)

  20. P Esquinazi, D Spemann, R Höhne, A Setzer, K H Han and T Butz Phys. Rev. Lett. 91 227201 (2003)

    Article  ADS  Google Scholar 

  21. P Esquinazi et al. Phys. Rev. B 66 024429 (2002)

    Article  ADS  Google Scholar 

  22. A V Rode et al. Phys. Rev. B 70 054407 (2004)

    Article  ADS  Google Scholar 

  23. S Talapatra et al. Phys. Rev. Lett. 91 097201 (2003)

    Article  Google Scholar 

  24. T L Makarova Studies of High-Temperature Superconductivity (New York: NOVA Science) p 107 (2003)

  25. T L Makarova Semiconductors 38 615 (2004)

    Article  ADS  Google Scholar 

  26. Y Yazyev and L Helm Phys. Rev. B 75 125408 (2007)

    Article  ADS  Google Scholar 

  27. P Chandrachud, S B Pujari, S Haldar, B Sanyal and D G Kanhere J. Phys. Condens. Matter 22 465502 (2010)

    Article  ADS  Google Scholar 

  28. J D Sharma, P K Ahluwalia and N Kumar AIP Conf. Proc. 1393 321 (2011)

    Article  ADS  Google Scholar 

  29. N Kumar, J D Sharma, A Kumar and P K Ahluwalia AIP Conf. Proc. 1512 192 (2013)

    Article  ADS  Google Scholar 

  30. J M Soler et al. J. Phys. Condens. Matter 14 2745 (2002)

    ADS  Google Scholar 

  31. User’s Guide, SIESTA 3.2, http://departments.icmab.es/leem/siesta/(Last accessed on 21st May, 2014)

Download references

Acknowledgments

We acknowledge SIESTA team for providing the code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Sharma, M., Sharma, J.D. et al. Study of magnetism in nano structures of graphene and functionalized graphene: a first principle study. Indian J Phys 89, 143–150 (2015). https://doi.org/10.1007/s12648-014-0526-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-014-0526-2

Keywords

PACs Nos.

Navigation