Skip to main content
Log in

Synthesis, crystal structure, and biological activity of menthol-based chiral quaternary phosphonium salts (CQPSs)

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Eight new chiral quaternary phosphonium salts (CQPSs) comprising (1R,2S,5R)-(‒)-menthyl or (1S,2R,5S)-( +)-menthyl group have been synthesized. The relationships between the physical chemical properties of CQPSs and the steric hindrance of the cation, the nature of the anion, and chiral center in the substituent are discussed. According to X-ray diffraction data, pairs of isomers with n-butyl substituents may crystallize in two different crystal systems, which is presumably determined by the conformational flexibility of alkyl chains. In the case of the second pair of isomers bearing tert-butyl fragments, this phenomenon is not observed. The study of the antimicrobial properties of CQPSs against Gram-positive bacteria Staphylococcus aureus, including Methicillin-resistant strains MRSA-1 and MRSA-2, Bacillus cereus and Enterococcus faecalis; the Gram-negative pathogenic bacteria: Escherichia coli and Pseudomonas aeruginosa; and the fungus Candida albicans has demonstrated the differences in antibacterial activity of chiral isomers as well as compounds with different steric hindrance of the phosphonium cation. The mechanism of action of CQPSs on the bacterial cells was evaluated using the crystal violet assay and the LIVE/DEAD BacLightTM Bacterial Viability Method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

CCDC contains the supplementary crystallographic data for CQPS. These data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: 44) 1223–336–033 or email: deposit@ccdc.cam.ac.uk.

Code availability

Not applicable.

Abbreviations

CQPS:

Chiral quaternary phosphonium salt

IL:

Ionic liquid

CIL:

Chiral ionic liquid

HPLC:

High-performance liquid chromatography

DMSO:

Dimethyl sulfoxide

References

  1. Nguyen LA, He H, Pham-Huy C (2006) Chiral drugs: an overview. Int J Biomed Sci 2:85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Sekhon BS (2013) Exploiting the power of stereochemistry in drugs: an overview of racemic and enantiopure drugs. J Mod Med Chem 1:10

    CAS  Google Scholar 

  3. Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura Y, Yamaguchi Y, Handa H (2010) Identification of a primary target of thalidomide teratogenicity. Science 327:1345. https://doi.org/10.1126/science.1177319

    Article  PubMed  CAS  Google Scholar 

  4. Calcaterra A, D’Acquarica I (2018) The market of chiral drugs: chiral switches versus de novo enantiomerically pure compounds. J Pharm Biomed Anal 147:323. https://doi.org/10.1016/j.jpba.2017.07.008

    Article  PubMed  CAS  Google Scholar 

  5. Flieger J, Feder-Kubis J, Tatarczak-Michalewska M (2020) Chiral ionic liquids: structural diversity, properties and applications in selected separation techniques. Int J Mol Sci 21:4253. https://doi.org/10.3390/ijms21124253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Hussain A, AlAjmi MF, Hussain I, Ali I (2019) Future of ionic liquids for chiral separations in high-performance liquid chromatography and capillary electrophoresis. Crit Rev Anal Chem 49:289. https://doi.org/10.1080/10408347.2018.1523706

    Article  PubMed  CAS  Google Scholar 

  7. Maurizio S, Perosa A, Noè M (2016) Phosphonium salts and P-ylides. Organophosphorus Chemistry 45:132. https://doi.org/10.1039/9781782626930-00132

    Article  CAS  Google Scholar 

  8. Yue Ct, Sun P, Li Fw (2022) Phosphonium ionic liquids. In: Zhang, S. (eds) Encyclopedia of ionic liquids. Springer, Singapore. https://doi.org/10.1007/978-981-33-4221-7_119

  9. Mathieu B, Jaffrès PA (2019) In: Iaroshenko V (ed) Recent developments in phosphonium chemistry. Organophosphorus chemistry: From molecules to applications. Wiley–VCH, Germany. https://doi.org/10.1002/9783527672240.ch2

  10. Khazalpour S, Yarie M, Kianpour E, Amani A, Asadabadi S, Seyf JY, Rezaeivala M, Azizian S, Zolfigol MA (2020) Applications of phosphonium-based ionic liquids in chemical processes. J Iran Chem Soc 17:1775. https://doi.org/10.1007/s13738-020-01901-6

  11. Pascariu A, Ilia G, Bora A et al (2003) Wittig and Wittig-Horner reactions under phase transfer catalysis conditions. Cent Eur J Chem 1:491. https://doi.org/10.2478/BF02475230

    Article  CAS  Google Scholar 

  12. Macarie L, Simulescu V, Ilia G (2019) Phosphonium-based ionic liquids used as reagents or catalysts. ChemistrySelect 4:9285. https://doi.org/10.1002/slct.201901712

    Article  CAS  Google Scholar 

  13. Hofmann A, Rauber D, Wang TM, Hempelmann R, Kay CW, Hanemann T (2022) Novel phosphonium-based ionic liquid electrolytes for battery applications. Molecules 27:4729. https://doi.org/10.3390/molecules27154729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Yao B, Paluch M, Wojnarowska Z (2023) Effect of bulky anions on the liquid-liquid phase transition in phosphonium ionic liquids: ambient and high-pressure dielectric studies. Sci Rep 13:3040. https://doi.org/10.1038/s41598-023-29518-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Verma DK, Dewangan Y, Singh AK, Mishra R, Susan MABH, Salim R, Taleb M, Hajjaji FE, Berdimurodov E (2022) Ionic liquids as green and smart lubricant application: an overview. Ionics 28:4923. https://doi.org/10.1007/s11581-022-04699-w

    Article  CAS  Google Scholar 

  16. Rahman MH, Khajeh A, Panwar P, Patel M, Martini A, Menezes PL (2022) Recent progress on phosphonium-based room temperature ionic liquids: synthesis, properties, tribological performances and applications. Tribol Int 167:107331. https://doi.org/10.1016/j.triboint.2021.107331

    Article  CAS  Google Scholar 

  17. Jia YW, Zhao X, Fu T, Li DF, Guo Y, Wang XL, Wang YZ (2020) Synergy effect between quaternary phosphonium ionic liquid and ammonium polyphosphate toward flame retardant PLA with improved toughness. Compos B Eng 197:108192. https://doi.org/10.1016/j.compositesb.2020.108192

    Article  CAS  Google Scholar 

  18. Egorova KS, Gordeev EG, Ananikov VP (2017) Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem Rev 117:7132. https://doi.org/10.1021/acs.chemrev.6b00562

    Article  PubMed  CAS  Google Scholar 

  19. Kumari P, Pillai VV, Benedetto A (2020) Mechanisms of action of ionic liquids on living cells: the state of the art. Biophys Rev 12:1187. https://doi.org/10.1007/s12551-020-00754-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Chavarria D, Borges A, Benfeito S, Sequeira L, Ribeiro M, Oliveira C, Cagide F (2023) Phytochemicals and quaternary phosphonium ionic liquids: connecting the dots to develop a new class of antimicrobial agents. J Adv Res 54:251. https://doi.org/10.1016/j.jare.2023.02.004

    Article  CAS  Google Scholar 

  21. Banerjee A, Aremu BR, Dehghandokht S, Salama R, Zhou H, Lackie Sh, Seifi M, Kennepohl P, Trant J (2023) Lethal weapon IL: a nano-copper/tetraalkylphosphonium ionic liquid composite material with potent antibacterial activity. RSC Sustain 1:1783. https://doi.org/10.1039/D3SU00203A

    Article  CAS  Google Scholar 

  22. Ermolaev VV, Kadyrgulova LR, Khrizanforov MN, Gerasimova TP, Baembitova GR, Lazareva AA, Miluykov VA (2022) Conductive mediators in oxidation based on ferrocene functionalized phosphonium ionic liquids. Int J Mol Sci 23:15534. https://doi.org/10.3390/ijms232415534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Arkhipova DM, Ermolaev VV, Baembitova GR, Samigullina AI, Lyubina AP, Voloshina AD (2023) Oxygen-containing Quaternary phosphonium salts (oxy-QPSs): synthesis, properties, and cellulose dissolution. Polymers 15:4097. https://doi.org/10.3390/polym15204097

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Ding J, Armstrong DW (2005) Chiral ionic liquids: synthesis and applications. Chirality 17:281. https://doi.org/10.1002/chir.20153

    Article  PubMed  CAS  Google Scholar 

  25. Payagala T, Armstrong DW (2012) Chiral ionic liquids: a compendium of syntheses and applications (2005–2012). Chirality 24:17. https://doi.org/10.1002/chir.21975

    Article  PubMed  CAS  Google Scholar 

  26. Suzuki S, Takahashi K (2023) Ionic liquids as organocatalysts and solvents for lignocellulose reactions. Chem Rec e202200264. https://doi.org/10.1002/tcr.202200264

  27. Yamakawa S, Wada K, Hidaka M, Hanasaki T, Akagi K (2019) Chiral liquid-crystalline ionic liquid systems useful for electrochemical polymerization that affords helical conjugated polymers. Adv Funct Mater 29:1806592. https://doi.org/10.1002/adfm.201806592

    Article  CAS  Google Scholar 

  28. Susam ZD, Tanyeli C (2021) Recyclable organocatalysts in asymmetric synthesis. Asian J Org Chem 10:1251. https://doi.org/10.1002/ajoc.202100165

    Article  CAS  Google Scholar 

  29. Morel A, Silarska E, Trzeciak AM, Pernak J (2013) Palladium-catalyzed asymmetric Heck arylation of 2, 3-dihydrofuran–effect of prolinate salts. Dalton Trans 42:1215. https://doi.org/10.1039/C2DT31672B

    Article  PubMed  CAS  Google Scholar 

  30. Morel A, Trzeciak AM, Pernak J (2014) Palladium catalyzed heck arylation of 2, 3-dihydrofuran — effect of the palladium precursor. Molecules 19:8402. https://doi.org/10.3390/molecules19068402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Zhuang W, Hachem K, Bokov D, Ansari MJ, Nakhjiri AT (2022) Ionic liquids in pharmaceutical industry: a systematic review on applications and future perspectives. J Molec Liq 349:118145. https://doi.org/10.1016/j.molliq.2021.118145

    Article  CAS  Google Scholar 

  32. Wu D, Cai P, Zhao X, Kong Y, Pan Y (2018) Recent progress of task-specific ionic liquids in chiral resolution and extraction of biological samples and metal ions. J Sep Sci 41:373. https://doi.org/10.1002/jssc.201700848

    Article  PubMed  CAS  Google Scholar 

  33. Jahdkaran E, Hosseini SE, Mohammadi Nafchi A, Nouri L (2021) The effects of methylcellulose coating containing carvacrol or menthol on the physicochemical, mechanical, and antimicrobial activity of polyethylene films. Food Science Nutrition 9:2768. https://doi.org/10.1002/fsn3.2240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Oertling H, Reckziegel A, Surburg H, Bertram HJ (2007) Applications of menthol in synthetic chemistry. Chem Rev 107:2136. https://doi.org/10.1021/cr068409f

    Article  PubMed  CAS  Google Scholar 

  35. Longhi M, Arnaboldi S, Husanu E, Grecchi S, Buzzi IF, Cirilli R, Guazzelli L (2019) A family of chiral ionic liquids from the natural pool: relationships between structure and functional properties and electrochemical enantiodiscrimination tests. Electrochim Acta 298:194. https://doi.org/10.1016/j.electacta.2018.12.060

    Article  CAS  Google Scholar 

  36. Gondal HY, Mumtaz S, Abbaskhan A, Mumtaz N, Cano I (2020) New alkoxymethyl-functionalized pyridinium-based chiral ionic liquids: Synthesis, characterization and properties. Chem Pap 74:2951. https://doi.org/10.1007/s11696-020-01135-z

    Article  CAS  Google Scholar 

  37. Feder-Kubis J (2011) NMR spectroscopy in studies of new chiral ionic liquids. Polimery 56:676

    Article  CAS  Google Scholar 

  38. Zagidullin AA, Ganushevich YS, Miluykov VA, Lonnecke P, Hey-Hawkins E (2020) Synthesis and asymmetric [4+2] cycloaddition reaction of 3,4,5-triphenyl-1-((1R,2S,5R)-menthyl)oxymethyl-1,2-diphosphole. J Organomet Chem 914:121218. https://doi.org/10.1016/j.jorganchem.2020.121218

    Article  CAS  Google Scholar 

  39. Pernak J, Feder-Kubis J (2006) Chiral Pyridinium-based ionic liquids containing the (1R,2S,5R)-(−)-Menthyl group. Tetrahedron: Asymmetry 17:1728. https://doi.org/10.1016/j.tetasy.2006.06.014

  40. Feder-Kubis J, Kubicki M, Pernak J (2010) 3-Alkoxymethyl-1-(1R,2S,5R)-(−)-menthoxymethylimidazolium salts-based chiral ionic liquids. Tetrahedron: Asymmetry 21:2709. https://doi.org/10.1016/j.tetasy.2010.10.029

  41. Pindur U, Lutz G, Rogge M (1995) First synthesis of chiral 3-vinylindoles as 4π-components for Diels-Alder reactions. J Heterocyclic Chem 32:201. https://doi.org/10.1002/jhet.5570320133

    Article  CAS  Google Scholar 

  42. Cheema ZM, Gondal HY, Siddiqui H, Choudhary MI (2020) Solvent free synthesis of 1-alkoxyphosphonium chlorides for stereoselective multipurpose vinyl ethers. Phosphorus Sulfur Silicon Relat Elem 195:1. https://doi.org/10.1080/10426507.2019.1633533

    Article  CAS  Google Scholar 

  43. Nisar M, Gondal HY, Cheema ZM, Abbasskhan A (2022) Lewis acid-catalyzed synthesis of alkoxymethylhalides for multipurpose mixed acetals: scope and limitations. Lett Org Chem 19:750–756. https://doi.org/10.2174/1570178619666220112105145

    Article  CAS  Google Scholar 

  44. Garner AC, Hodgkinson RC, Wallis JD (2013) Menthyloxycarbonyl phosphonium chlorides: new derivatives for determining the enantiomeric excess of chiral tertiary phosphines. Tetrahedron Lett 54:5583. https://doi.org/10.1016/j.tetlet.2013.07.155

    Article  CAS  Google Scholar 

  45. Voloshina AD, Sapunova AS, Kulik NV, Belenok MG, Strobykina IY, Lyubina AP, Gumerova SK, Kataev VE (2021) Antimicrobial and cytotoxic effects of ammonium derivatives of diterpenoids steviol and isosteviol. Bioorg Med Chem 32:115974. https://doi.org/10.1016/j.bmc.2020.115974

    Article  PubMed  CAS  Google Scholar 

  46. CrysAlisPro. Version 1.171.41.106a (2021) Rigaku Oxford Diffraction

  47. Sheldrick GM (2015) SHELXT - Integrated space-group and crystal-structure determination. Acta Cryst A 71:3. https://doi.org/10.1107/S205327331402637

    Article  Google Scholar 

  48. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Cryst C 71:3. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  49. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Cryst 42:229. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  50. Macrae CF, Sovago I, Cottrell SJ, Galek PTA, McCabe P, Pidcock E, Platings M, Shields GP, Stevens JS, Towler M, Wood PA (2020) Mercury 4.0. From visualization to analysis, design and prediction. J Appl Cryst 53:226. https://doi.org/10.1107/S1600576719014092

  51. Zielinski D, Szpecht A, Pomázi Á, Kovács Z, Szolnoki B, Pinke B, Toldy A, Smiglak M (2023) Multifunctional modifying systems based on ionic liquids for epoxy resin systems and composites. Appl Sci 13:10661. https://doi.org/10.3390/app131910661

    Article  CAS  Google Scholar 

  52. Ermolaev VV, Arkhipova DM, Miluykov VA, Lyubina AP, Amerhanova SK, Kulik NV, Voloshina AD, Ananikov VP (2022) Sterically hindered Quaternary phosphonium salts (QPSs): antimicrobial activity and hemolytic and cytotoxic properties. Int J Mol Sci 23:86. https://doi.org/10.3390/ijms23010086

    Article  CAS  Google Scholar 

  53. Iscan G, Kirimar N, Kurkcuoglu M, Baser KHC, Demirici F (2002) Antimicrobial screening of Mentha piperita essential oils. J Agric Food Chem 50:3943. https://doi.org/10.1021/jf011476k

    Article  PubMed  CAS  Google Scholar 

  54. Alonso JL, Mascellaro S, Moreno Y, Ferrús MA, Hernández J (2002) Double-staining method for differentiation of morphological changes and membrane integrity of Campylobacter coli cells. AEM 68(10):5151–5154. https://doi.org/10.1128/AEM.68.10.5151-5154.2002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The support and advice from Academician of Russian Academy of Sciences Valentin P. Ananikov are gratefully acknowledged.

Funding

This research was supported by the Russian Science Foundation (RSF grant no. 22–23-20161).

Author information

Authors and Affiliations

Authors

Contributions

Daria M. Arkhipova, Aida I. Samigullina and Anna P. Lyubina carried out the experimental work and analyzed the data. Daria M. Arkhipova, Alexandra D. Voloshina, Mikhail E. Minyaev and Vadim V. Ermolaev, conceptualization, data curation and writing—original draft. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Vadim V. Ermolaev.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3027 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arkhipova, D.M., Samigullina, A.I., Minyaev, M.E. et al. Synthesis, crystal structure, and biological activity of menthol-based chiral quaternary phosphonium salts (CQPSs). Struct Chem 35, 75–88 (2024). https://doi.org/10.1007/s11224-023-02259-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-023-02259-0

Keywords

Navigation