Skip to main content
Log in

Investigations on thermal, dielectric, and quantum chemical calculations of 2-amino-5-chloropyridinium 4-aminobenzoate: a nonlinear optical material

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The quality 2-amino-5-chloropyridinium 4-aminobenzoate (2A5ClP4AB) single crystals were grown in methanol solvent by employing the solvent evaporation technique. The stoichiometry ratio of 2A5ClP4AB was confirmed by microanalysis. The melting point, decomposition, crystalline phase, purity, and specific heat capacity of 2A5ClP4AB crystal were explored by thermogravimetric-differential thermal analyses (TG–DTA), differential scanning calorimetry (DSC), and modulated scanning calorimetry (MDSC) methods. The various dielectric properties of 2A5ClP4AB single crystal concerning temperature and frequency were examined by dielectric measurements. The nonlinear optical (NLO) parameters such as dipole moment, polarizability, first-order hyperpolarizability, and second-order hyperpolarizabilities of the 2A5ClP4AB molecule were computed using density functional theory (DFT) by utilizing the Gaussian 09 program. The figured HOMO–LUMO energies of 2A5ClP4AB demonstrate the occurrence of a charge transfer mechanism, whereas the MESP map illustrates how various molecular interactions took place in it. Hirshfeld surface analyses helped to decode the nature of the interactions and packing structure of the crystals. The above studies were intended to explore the structural, thermal, electrical and NLO properties of 2A5ClP4AB and also to strengthen its effectiveness for optoelectronic and frequency conversion applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kannan V, Karthick S, Brahadeeswaran S (2019) Photoluminescence, third-order nonlinear optical and DFT studies of hydrazonium L-Tartrate – combined experimental and theoretical studies. Z Phys Chem 233:1293–1323

  2. Kannan V, Thriupugalmani K, Brahadeeswaran S (2013) Studies on vibrational, NMR spectra and quantum chemical calculations of N-Succinopyridine: an organic nonlinear optical material. J Mol Struct 1049:268–279

  3. Karthick S, Thirupugalmani K, Krishnakumar M, Kannan V, Vinitha G, Brahadeeswaran S (2020) Synthesis, structural, dielectric, laser damage threshold, third order nonlinear optical and quantum chemical investigations on a novel organic crystalline material: Pyrrolidin-1-ium 2-chloro-4-nitrobenzoate 2-chloro-4-nitrobenzoic acid for optoelectronic applications. Opt Laser Technol 122:105849

  4. Bredas JL, Adant C, Tackx P, Persoons A, Pierce BM (1994) Chemical Review 94:243–278

    Article  CAS  Google Scholar 

  5. Prasad PN, Williams DJ (1991) Introduction to nonlinear optical effects in molecules and polymers. Wiley, New York

    Google Scholar 

  6. Brahadeeswaran S, Onduka S, Takagi M, Takahashi Y, Adachi H, Kamimura T, Yoshimura M, Mori Y, Yoshida K, Sasaki T (2006) J Cryst Growth and Design 6:2463–2468

    Article  CAS  Google Scholar 

  7. Era P, Jauhar RM, Vivek P, Murugakoothan P (2021) Mater Chem Phys 257:123647

  8. Suthan T, Rajesh NP, Mahadevan CK, Bhagavannarayana G (2011) Mater Chem Phys 129:433–438

    Article  CAS  Google Scholar 

  9. Pandi P, Peramaiyan G, Kumar MK, Kumar RM, Jayavel R (2012) Acta Part A 88:77– 81

  10. Kannan V, Brahadeeswaran S (2015) J Therm Anal Calorim 124(2):889–898

    Article  Google Scholar 

  11. Krishnakumar M, Karthick S, Thirupugalmani K, Brahadeeswaran S (2017) Opt Mat 66:79–93

    Article  CAS  Google Scholar 

  12. Semin S, Li X, Duan Y, Rasing T (2021) Adv Optical Mater 9:2100327

    Article  CAS  Google Scholar 

  13. Shankar M, Thirupugalmani K, Nehru K, Athimoolam S, Tamilmani V, Potheher IV (2021) J Mol Struct 1243:130905

  14. Kannan V, Sugumar P, Brahadeeswaran S, Ponnuswamy MN (2012) Acta Crystallogr. Sect E: Struct Rep online 68:o3187–o3193

    Article  CAS  Google Scholar 

  15. Krishnakumar M, Thirupugalmani K, Brahadeeswaran S (2016) Materials Science. Poland

  16. Pulay P, Zhon X, Fogarasi G (1993). In: Fransto R (ed) NATO ASI Series, vol. C 406. Kluwer, Dordrecht, p 99

    Google Scholar 

  17. GAUSSIAN 03 Program (2004) GAUSSIAN Inc., Wallingford 

  18. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Jr Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci M, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al–Laham MA, Peng Y, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) GAUSSIAN, Inc., Pittsburgh PA

  19. Sun YX, Hao QL, Wei WX, Yu ZX, Lu LD, Wang X, Wang YS (2009) J Mol Struct (Theochem) 904:74–82

    Article  CAS  Google Scholar 

  20. Kleinman DA (1962) Phys Rev 126:1977

    Article  CAS  Google Scholar 

  21. Ananda S, Khamees HA, Mahendra M, Kumara C, Jagadeesh Prasad D, Hegde TA, Vinitha G (2021) J Mater Sci: Mater Electron 32:14677–14702

  22. Satchidhanandham P, Karthick S, Brahadeeswaran S (2017) J Mater Sci: Mater Electron 28:5754–5775 

  23. Shanmugam G, Thirupugalmani K, Kannan V, Brahadeeswaran S (2013) Spectrochim Acta Part A 106:175–184

    Article  CAS  Google Scholar 

  24. Verdonck E, Schaap K, Thomas LC (1999) Int J Pharm 976:3–20

    Article  Google Scholar 

  25. Kannan V, Thirupugalmani K, Shanmugam G et al (2014) Synthesis, growth, thermal, optical, mechanical and dielectric studies of N-succinopyridine. J Therm Anal Calorim 115:731–742

    Article  CAS  Google Scholar 

  26. Kannan V, Rakhikrishna R, Philip J, Brahadeeswaran S (2013) J Therm Anal Calorim 119:339–350

    Google Scholar 

  27. Krishnakumar M, Karthick S, Thirupugalmani K, Babu B, Vinitha G (2018) Opt Laser Technol 101:91–106

    Article  CAS  Google Scholar 

  28. Mathew V, Jacob S, Mahadevan CK, Abraham KE (2011) Mater Lett 65:2142–2145

    Article  CAS  Google Scholar 

  29. Babu B, Chandrasekaran J, Mohanbabu B (2016) Yoshitaka Matsushita and M. Saravanakumarc, RSC Adv 6:110884–110897

    Article  CAS  Google Scholar 

  30. Suthan T, Rajesh NP, Mahadevan CK, Senthil Kumar K, Bhagavannarayana G (2011) Spectrochim. Acta Part A 79:1443– 1448

  31. Kannan V, Brahadeeswaran S, Cryst J (2013) Growth 374:71–78

    Article  CAS  Google Scholar 

  32. Suthan T, Rajesh NP, Mahadevan CK, Sajan D, Bhagavannarayana G (2011) Mater Chem Phys 130:915–920

    Article  CAS  Google Scholar 

  33. Fan H-L, Ren Q, Wang X-Q, Li T-B, Sun J, Zhang G-H, Xu D, Yu G, Sun Z-H (2009) Nat Sci 1:136

    CAS  Google Scholar 

  34. Parol V, Prabhu AN, Taher MA, Naraharisetty SRG, Lokanath NK, Upadhyaya V (2020) J Mater Sci: Mater Electron 31:9133–9150

  35. Karabacak M, Yilan E (2012) Spectrochim Acta Part A 87:273–285

    Article  CAS  Google Scholar 

  36. Zyss J, Chemla DS (1987) Nonlinear optical properties of organic molecules and crystals. Academic Press, London

    Google Scholar 

  37. Etter MC, Baures PW (1988) J Am Chem Soc 110:639–640

    Article  CAS  Google Scholar 

  38. Panunto TW, Urbanczyk-Lipkowska Z, Johnson R, Etter MC (1987) J Am Chem Soc 109:7786–7797

    Article  CAS  Google Scholar 

  39. Kosar B, Albayrak C (2011) Spectrochim Acta A 78:160–167

    Article  Google Scholar 

  40. Mebi CA (2011) J Chem Sci 121:727–731

    Article  Google Scholar 

  41. Parr RG, Szentpaly L, Liu S (1999) J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  42. Suvitha A, Venkataramanan NS, Sahara R, Kawazoe Y (2019) A theoretical exploration of the intermolecular interactions between resveratrol and water: a DFT and AIM analysis. J Mol Model 25:56

  43. Venkataramanan NS, Suvitha A, Kawazoe Y (2019) Unraveling the binding nature of hexane with quinone functionalized pillar quinone: A computational study, J Incl Phenom Macrocyclic Chem 95:307–319

  44. Naveen S, Kumara K, Kumar AD, Kumar KA, Lokanath NK (2019) Chemical Data Collections 15–16:89–96

  45. Karthick S, Santha A, Ganesh D, Thirupugalmani K, Ganesamoorthy S, Chaudhary AK, Brahadeeswaran S (2020) J Mol Struct 1224:129065

  46. Kanmazalp SD, Sagher M, Dege N et al (2023) J Struct Chem 64:1137–1146

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. N.S.Venkatramanan for his help in the quantum chemical calculations.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material synthesis, growth, and characterization were performed by V. Kannan, A. Santha, and P.Sugumar. The interpretation and manuscript preparation is done by V. Kannan and S. Brahadeswaran. The first draft of the manuscript was written by V. Kannan, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Brahadeeswaran. S..

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

V., K., A., S., P., S. et al. Investigations on thermal, dielectric, and quantum chemical calculations of 2-amino-5-chloropyridinium 4-aminobenzoate: a nonlinear optical material. Struct Chem 35, 977–991 (2024). https://doi.org/10.1007/s11224-023-02232-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-023-02232-x

Keywords

Navigation