Skip to main content
Log in

Non linear optical property of 4-aminopyridinium 2-chloro-5-nitrobenzoate

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

A centro-symmetric crystal of 4-aminopyridinium 2-chloro-5-nitrobenzoate (4A2Cl5NB) has been grown by the slow evaporation method, and its molecular structure has been confirmed by powder X-ray diffraction using GSAS software; Hirshfeld surface analysis has been carried out to analyze the intermolecular interaction through hydrogen bonding in the molecular structure; and vibration frequencies have been assigned by FTIR spectral studies. UV visible absorption occurs at the lower cut-off wavelength of 266 nm, and the optical band gap was found to be Eg = 4.1 eV. A broad emission band was observed at 482 nm in the luminescence spectrum. Thermo-gravimeter and differential thermal (TG–DTA) analysis were carried out. Micro-hardness studies of grown crystals are discussed. A dielectric study reveals a low dielectric constant and loss at higher frequencies, attesting to nonlinear optical activity. Cyclic Volta-metric studies were also analyzed. The second harmonic generation efficiency of the (4A2Cl5NB) crystal is 4.8 times superior to that of the KDP crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. P Purushothaman, K Arulaabaranam, P Palani, N Durairaj and G Mani Indian J .Phys. 97 3835 (2024)

  2. T Murugan, K Sakthi Murugesan and B Milton Boaz Indian J. Phys. 96 3797 (2022)

  3. B Suresh Kumar, M R Jagadeesh, C Madhu and H M Suresh Kumar Indian J. Phys. 95 1325 (2021)

  4. E Raju, P Jayaprakash et al Chem. Phys. lett 780 138941 (2021)

    Article  Google Scholar 

  5. Venkatram Nalla et al. IUCr.J. 2 317 (2015)

  6. Muhammad Tahir et al RSC Adv. 14 4221 (2024)

    Article  Google Scholar 

  7. Anqiang Zhang et al J. Appl. Polym. Sci. 129 2435 (2013)

    Article  Google Scholar 

  8. A Mielcarek Chem 29 1189 (2018)

    Google Scholar 

  9. J Roziere, J M Williams, E Grech, Z Malarski and L A Sobcyk J. Chem. Phys. 72 6117 (1980)

  10. J Christina Jebapriya, D Reuben Jonathan, S Shahil Kirupavathy, R Ragu and Johanan Christian Prasana Opt. Mater. 107 110035 (2020)

  11. C Indumathi J. Phys. Chem. Solids 106 37 (2017)

    Article  ADS  Google Scholar 

  12. Raja Raghavan, Seshadri Srinivasan and Santhanam Venkatakrishnan J. Phys 67 27 (2020)

    Google Scholar 

  13. R Kaliammal et al Chin. J. Phys 68 436 (2020)

    Article  Google Scholar 

  14. R Kaliammal, S Sudhahar and G Parvathy J. Mol. Struct. 1212 128069 (2020)

    Article  Google Scholar 

  15. P Pandi and G Peramaiyan Acta—A: Mol. Biomol. Spectrosc. 88 77 (2012)

    Article  Google Scholar 

  16. A Aditya Prasad, K Muthu, M Rajasekar, V Meenatchi and S P Meenakshisundaram Spectrochim. Acta - A: Mol. Biomol. Spectrosc. 135 805 (2015)

  17. P R Spackman et al J. Appl. Crystallogr. 54 1006 (2021)

    Article  ADS  Google Scholar 

  18. N Elangovan J. Mol. Struct. 1250 131762 (2022)

    Article  Google Scholar 

  19. S Karthick, K K Thirupugalmani, G Shanmugam, V Kannan and S Brahadeeswaran J. Mol. Struct. 1156 264 (2018)

    Article  ADS  Google Scholar 

  20. B M Mathew M R Sudarsanakumar, M R Prathapachandra Kurup and I H Joe Indian J. Phys. 96 2161 (2022)

  21. B S I Lasalle, M S Pandian and P Ramasamy Inorg. Chem. Commun. 157 111388 (2023)

  22. L Chandra, J Chandrasekaran and K Perumal B Babu Optik (Stuttg.) 127 6 (2015)

    Google Scholar 

  23. M Vinolia J. Mol. Struct. 1288 135696 (2023)

    Article  Google Scholar 

  24. G Ahila Res. Express 6 4 (2019)

    Google Scholar 

  25. M Krishnakumar and S Karthick Mater. 66 79 (2017)

    Google Scholar 

  26. A Mielcarek Chem. 29 1189 (2018)

    Google Scholar 

  27. J Roziere, J M Williams and E Grech J. Chem. Phys. 72 6117 (1980)

    Article  ADS  Google Scholar 

  28. P Teulon, R G Delaplane and I Olovsson Acta Crystallogr., Sect. C: Struct. Chem. 41 479 (1985)

  29. H Lu, X Zhou, L Wang and L Jin Molecules 25 1772 (2020)

  30. N Elangovan J. Indian Chem. Soc. 98 100144 (2021)

    Article  Google Scholar 

  31. N Elangovan and S Sowrirajan J. Mol. Struct. 1241 130544 (2021)

    Article  Google Scholar 

  32. Teruki Sugiyama, Jiben Meng and Teruo Matsuura Acta Crystallogr., Sect. C: Struct. Chem. 58 o242 (2002)

  33. S A Tarek J. Appl. Chem. 13 45 (2020)

  34. P R Jubu, F K Yam, V M Igba and K P Beh J. Solid State Chem. 290 121576 (2020)

    Article  Google Scholar 

  35. M Srinivas et al J. Sci.: Adv. Mater. Devices. 1 324 (2016)

    Google Scholar 

  36. P Purushothaman et al J. Mater. Sci.: Mater. Electron. 32 22342 (2021)

    Google Scholar 

  37. S Karthic et al Opt. Laser Technol 122 105849 (2020)

    Article  Google Scholar 

  38. V Siva J. Mol. Struct. 1191 110 (2019)

    Article  ADS  Google Scholar 

  39. P Purushothamanm et al. J. Mater. Sci.: Mater. Electron. 32 (2021)

  40. M Odabaşoğlu et al. J. Mol. Struct. 133 (2003)

  41. T Uma Devi et al. J. Miner. Mater. Char. Eng. 9 495 (2010)

  42. G Pasupathi and P Philominathan J. Miner. Mater. Char. Eng. 11 1 (2012)

    Google Scholar 

  43. Paul M Dinakaran and S Kalainathan Mater. Chem. Phys. 143 263 (2013)

  44. S Divya et al J Mater Sci Mater Electron. 34 274 (2023)

    Article  Google Scholar 

  45. Dennis H Evans et al. J. Chem. Educ. 60 290 (1983)

  46. J J Van Benschoten, J Y Lewis and W R Heineman J. Chem. Educ. 60 772 (1983)

  47. J Mohana and G Ahila J. Cryst. Growth. 450 181 (2016)

    Article  ADS  Google Scholar 

  48. RA Smith Acta Crystallogr. B31 2345 (1975)

  49. K Kurtz and TT Perry J. Appl. Phys. 39 3798 (1968)

Download references

Acknowledgements

The authors express their gratitude to the managements of St. Joseph's College (Autonomous), Tiruchirappalli 620002, Tamil Nadu, India for their encouragement.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by both authors. All authors read and approved the final manuscript.

Corresponding author

Correspondence to A Sinthiya.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeyanthi, P., Sinthiya, A. Non linear optical property of 4-aminopyridinium 2-chloro-5-nitrobenzoate. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03172-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03172-w

Keywords

Navigation