Skip to main content
Log in

Theoretical insights into the structural and magnetic properties of trimetallic Ni-Co–Rh nanoalloys

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In this study, we have investigated structural and magnetic properties of the nanoalloys of size 38 atoms of compositions Ni32Co6-nRhn and 55 atoms of compositions Ni42Co13-nRhn. We have performed simulation searches for the lowest energy structures at Gupta level and then performed DFT re-optimization for these structures. The lowest energy structures of Ni32Co6-nRhn and Ni42Co13-nRhn nanoalloys at Gupta level were found to be truncated octahedron and icosahedron structure, respectively. The lowest energy values were found to be at the compositions Ni32Co4Rh2 in Ni32Co6-nRhn and Ni42Co1Rh12 in Ni42Co13-nRhn nanoalloys. Ni atoms full occupy only the surface of the truncated octahedron and icosahedron structure with the exception of bimetallic Ni42Rh13 nanoalloy. Since the energetic stability of the truncated octahedron and icosahedron can be rationalized in terms of local atomic pressure, we have calculated the local atomic pressures of the compositions. We have also investigated the size, geometric structure, and composition effects on magnetic properties as well as stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this manuscript.

References

  1. Ferrando R (2016) Structure and properties of nanoalloys. In: Palmer RE (ed) Frontiers of nanoscience. Elsevier

  2. Akbarzadeh H, Mehrjouei E, Abbaspour M et al (2023) Thermal behavior of different types of Au–Pt–Pd nanoparticles: dumbbell-like, three-shell, core-shell, and random-alloy. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2022.126955

    Article  Google Scholar 

  3. Nelli D, Roncaglia C, Ahearn S et al (2021) Octahedral growth of ptpd nanocrystals. Catalysts. https://doi.org/10.3390/catal11060718

    Article  Google Scholar 

  4. Johnston RL (2012) Metal nanoparticles and nanoalloys. In: Palmer RE (ed) Frontiers of nanoscience. Elsevier

  5. Bell AT (2003) The impact of nanoscience on heterogeneous catalysis. Science (80- ). https://doi.org/10.1126/science.1083671

  6. Di Paola C, Baletto F (2011) Oxygen adsorption on small PtNi nanoalloys. Phys Chem Chem Phys. https://doi.org/10.1039/c0cp01662d

    Article  PubMed  Google Scholar 

  7. Akbarzadeh H, Mehrjouei E, Abbaspour M, Shamkhali AN (2021) Melting behavior of bimetallic and trimetallic nanoparticles: a review of MD simulation studies. Top Curr Chem. https://doi.org/10.1007/s41061-021-00332-y

    Article  Google Scholar 

  8. Toshima N, Ito R, Matsushita T, Shiraishi Y (2007) Trimetallic nanoparticles having a Au-core structure. Catal Today. https://doi.org/10.1016/j.cattod.2007.03.013

    Article  Google Scholar 

  9. Tsai SH, Liu YH, Wu PL, Yeh CS (2003) Preparation of Au-Ag-Pd trimetallic nanoparticles and their application as catalysts. J Mater Chem. https://doi.org/10.1039/b300952a

    Article  Google Scholar 

  10. Kushwah M, Bhadauria S, Arora K, Gaur MS (2019) Enhanced catalytic activity of chemically synthesized Au/Ag/Cu trimetallic nanoparticles. Mater Res Express. https://doi.org/10.1088/2053-1591/ab2b04

    Article  Google Scholar 

  11. Sanders-Gutierrez OA, Luna-Valenzuela A, Posada-Borbón A et al (2022) Molecular dynamics and DFT study of 38-atom coinage metal clusters. Comput Mater Sci. https://doi.org/10.1016/j.commatsci.2021.110908

    Article  Google Scholar 

  12. Cox AJ, Louderback JG, Bloomfield LA (1993) Experimental observation of magnetism in rhodium clusters. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.71.923

    Article  PubMed  Google Scholar 

  13. Cox AJ, Louderback JG, Apsel SE, Bloomfield LA (1994) Magnetism in 4d-transition metal clusters. Phys Rev B. https://doi.org/10.1103/PhysRevB.49.12295

    Article  Google Scholar 

  14. Zitoun D, Respaud M, Respaud M et al (2002) Magnetic enhancement in nanoscale CoRh particles. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.89.037203

    Article  PubMed  Google Scholar 

  15. Muñoz-Navia M, Dorantes-Dávila J, Pastor GM (2004) Calculation of the orbital magnetic moments in fcc 3d–4d binary clusters: Co - Rh and Co - Pd. J Phys Condens Matter. https://doi.org/10.1088/0953-8984/16/22/026

    Article  Google Scholar 

  16. Dennler S, Ricardo-Chavez JL, Morillo J, Pastor GM (2003) Density functional calculations on small bimetallic magnetic clusters. Eur Phys J D. https://doi.org/10.1140/epjd/e2003-00130-9

    Article  Google Scholar 

  17. Sondón T, Saúl A, Guevara J (2007) Magnetic properties of Co-Rh and Ni-Rh nanowires. Phys B Condens Matter. https://doi.org/10.1016/j.physb.2007.04.089

    Article  Google Scholar 

  18. Sondón T, Guevara J (2004) Magnetic properties of Ni-Rh clusters: behavior in the Ni-rich region. Phys B Condens Matter. https://doi.org/10.1016/j.physb.2004.09.101

    Article  Google Scholar 

  19. Sondón T, Guevara J, Saúl A (2007) Study of the structure, segregation, and magnetic properties of Ni-Rh clusters. Phys Rev B - Condens Matter Mater Phys. https://doi.org/10.1103/PhysRevB.75.104426

    Article  Google Scholar 

  20. Aguilera-Granja F, Longo RC, Gallego LJ, Vega A (2010) Structural and magnetic properties of X12 y (X, Y=Fe Co, Ni, Ru, Rh, Pd, and Pt) nanoalloys. J Chem Phys 10(1063/1):3427292

    Google Scholar 

  21. Kutyła D, Salcı A, Kwiecińska A et al (2020) Catalytic activity of electrodeposited ternary Co–Ni–Rh thin films for water splitting process. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2020.05.196

    Article  Google Scholar 

  22. Settem M, Ferrando R, Giacomello A (2022) Tempering of Au nanoclusters: capturing the temperature-dependent competition among structural motifs. Nanoscale. https://doi.org/10.1039/d1nr05078h

    Article  PubMed  Google Scholar 

  23. Zhu B, Front A, Guesmi H et al (2017) Magic compositions in Pd-Au nanoalloys. Comput Theor Chem. https://doi.org/10.1016/j.comptc.2016.12.023

    Article  Google Scholar 

  24. Chen F, Johnston RL (2008) Energetic, electronic, and thermal effects on structural properties of Ag - Au nanoalloys. ACS Nano. https://doi.org/10.1021/nn700226y

    Article  PubMed  Google Scholar 

  25. Garip AK, Arslan H, Rapetti D, Ferrando R (2020) A DFT study of chemical ordering and oxygen adsorption in AuPtPd ternary nanoalloys. Mater Today Commun. https://doi.org/10.1016/j.mtcomm.2020.101545

    Article  Google Scholar 

  26. Wu GH, Liu QM, Wu X (2015) Geometrical and energetic properties in 38-atom trimetallic AuPdPt clusters. Chem Phys Lett. https://doi.org/10.1016/j.cplett.2014.12.022

    Article  Google Scholar 

  27. Wu G, Sun Y, Wu X et al (2017) Large scale structural optimization of trimetallic Cu–Au–Pt clusters up to 147 atoms. Chem Phys Lett. https://doi.org/10.1016/j.cplett.2017.08.049

    Article  Google Scholar 

  28. Taran S, Garip AK, Arslan H (2020) A theoretical study on chemical ordering of 38-atom trimetallic Pd-Ag-Pt nanoalloys. Chinese Phys B. https://doi.org/10.1088/1674-1056/ab99b4

    Article  Google Scholar 

  29. Taran S, Garip AK, Arslan H (2020) Chemical ordering effect on structural stability of trimetallic Cu-Au-Pt nanoalloys. Phys Scr. https://doi.org/10.1088/1402-4896/aba3ab

    Article  Google Scholar 

  30. Cyrot-Lackmann F, Ducastelle F (1971) Binding energies of transition-metal atoms adsorbed on a transition metal. Phys Rev B. https://doi.org/10.1103/PhysRevB.4.2406

    Article  Google Scholar 

  31. Rosato V, Guillope M, Legrand B (1989) Thermodynamical and structural properties of f.c.c. transition metals using a simple tight-binding model. Philos Mag A. https://doi.org/10.1080/01418618908205062

  32. Taran S, Arslan H (2020) Stability and magnetic behaviour of 19-, 23- and 26-atom trimetallic Pt–Ni–Ag nanoalloys. Mol Phys. https://doi.org/10.1080/00268976.2020.1818859

    Article  Google Scholar 

  33. Taran S, Garip AK, Arslan H (2021) Investigation of the chemical ordering and structural properties of the trimetallic (PtNi)@Ag nanoalloys. J Clust Sci. https://doi.org/10.1007/s10876-020-01778-8

    Article  Google Scholar 

  34. Cleri F, Rosato V (1993) Tight-binding potentials for transition metals and alloys. Phys Rev B. https://doi.org/10.1103/PhysRevB.48.22

    Article  Google Scholar 

  35. Akbarzadeh H, Mehrjouei E, Ramezanzadeh S, Izanloo C (2017) Ni-Co bimetallic nanoparticles with core-shell, alloyed, and Janus structures explored by MD simulation. J Mol Liq. https://doi.org/10.1016/j.molliq.2017.10.135

    Article  Google Scholar 

  36. Varas A, Aguilera-Granja F, Rogan J, Kiwi M (2015) Structural, electronic, and magnetic properties of FexCoyNiz (x + y + z = 13) clusters: a density-functional-theory study. J Magn Magn Mater. https://doi.org/10.1016/j.jmmm.2015.06.088

    Article  Google Scholar 

  37. Fromen MC, Morillo J, Casanove MJ, Lecante P (2006) Structure and chemical order in Co-Rh nanoparticles. Europhys Lett. https://doi.org/10.1209/epl/i2005-10469-3

    Article  Google Scholar 

  38. Yıldırım H, Göcen T, Garip AK (2022) Melting behavior of Ir-Ag-Au nanoalloys: a molecular dynamic study. Mol Simul. https://doi.org/10.1080/08927022.2022.2072839

    Article  Google Scholar 

  39. Akbarzadeh H, Abbaspour M, Mehrjouei E (2018) Effect of systematic addition of the third component on the melting characteristics and structural evolution of binary alloy nanoclusters. J Mol Liq. https://doi.org/10.1016/j.molliq.2017.11.075

    Article  Google Scholar 

  40. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  PubMed  Google Scholar 

  41. Giannozzi P, Baroni S, Bonini N et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter. https://doi.org/10.1088/0953-8984/21/39/395502

    Article  PubMed  Google Scholar 

  42. Giannozzi P, Andreussi O, Brumme T et al (2017) Advanced capabilities for materials modelling with Quantum ESPRESSO. J Phys Condens Matter. https://doi.org/10.1088/1361-648X/aa8f79

    Article  PubMed  Google Scholar 

  43. Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892. https://doi.org/10.1103/PhysRevB.41.7892

    Article  CAS  Google Scholar 

  44. Yıldırım H, Kanbur U, Arslan H (2022) Poly-icosahedral Co–Fe–Pd nanoalloy: isomerism effect on the structural and magnetic properties from DFT. Phys B Condens Matter. https://doi.org/10.1016/j.physb.2022.414122

    Article  Google Scholar 

  45. Ferrando R (2015) Symmetry breaking and morphological instabilities in core-shell metallic nanoparticles. J Phys Condens Matter. https://doi.org/10.1088/0953-8984/27/1/013003

    Article  PubMed  Google Scholar 

  46. Ferrando R (2018) Stress-driven structural transitions in bimetallic nanoparticles. Front Nanosci. https://doi.org/10.1016/B978-0-08-102232-0.00006-3

    Article  Google Scholar 

  47. Taran S, Yildirim H, Arslan H (2021) Structural and magnetic properties of polyicosahedral Ni-Pt-Cu ternary nanoalloys. J Phys B At Mol Opt Phys. https://doi.org/10.1088/1361-6455/ac0fcc

    Article  Google Scholar 

Download references

Acknowledgements

The DFT calculations reported in this paper were fully performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).

Author information

Authors and Affiliations

Authors

Contributions

Songül Taran: conceptualization, methodology, formal analysis, investigation, writing—original draft, writing—review and editing. Haydar Arslan: conceptualization, methodology, formal analysis, investigation, writing—original draft, writing—review and editing.

Corresponding author

Correspondence to Songül Taran.

Ethics declarations

Ethical approval

This declaration is not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taran, S., Arslan, H. Theoretical insights into the structural and magnetic properties of trimetallic Ni-Co–Rh nanoalloys. Struct Chem 35, 777–790 (2024). https://doi.org/10.1007/s11224-023-02229-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-023-02229-6

Keywords

Navigation